Unit 3 Intro to Functions Day 6 Domain and Range

I can ...

... given the domain of a function, determine the range of the function.

What is the difference between . . .

A *roster* is a list of the elements in a set, separated by commas and surrounded by French curly braces.

{2, 3, 4, 5, 6} is a roster for the set of integers from 2 to 6, inclusive.

Set-builder notation is a mathematical shorthand for precisely stating all numbers of a specific set that possess a specific property.

The set $\{x \mid x > 0\}$ is read aloud, "the set of all x such that x is greater than 0."

EXAMPLES

Find the domain and range of the relations.

The graph of y = H(x) is given.

b. For what value(s) of x is
$$H(x) = 3$$
?

Determine the domain for which the function is increasing. ġ.

- Determine the domain for which the function is decreasing. ദ
- Determine the domain for which the function is constant. Ŧ.

I THINK I GOT IT?

1. Write the domain and range of the relations in set builder notation and interval notation.

I GOT IT!

2. The graph of y = f(x) is given.

a. Find f(-3).

b. For what value(s) of x is f(x) = 2?

d. Write the range of f.

e. Determine the domain for which the function is constant.

ANSWERS: 1) Line D: $\{x \mid -\infty < x < \infty\}$; $(-\infty, \infty)$ R: $\{f(x) \mid -\infty < x < \infty\}$; $(-\infty, \infty)$ Absolute Value D: $\{x \mid -\infty < x < \infty\}$; $(-\infty, \infty)$ R: $\{f(x) \mid -\infty < x \le 3\}$; $(-\infty, 3)$ 2) a. f(-3) = -3 b. x = 0, 2 c. D: $\{x \mid -3 \le x \le 3\}$; [-3, 3] d. $\{f(x) \mid -3 \le x \le 3\}$; [-3, 3] e. D: $\{x \mid -2 \le x \le -1\}$; [-2, -1]

I can ...

... given the domain of a function, determine the range of the function.

What is the difference between . . .

Domain: {-3,-2,-1,0,1,2,3}

Ronge: {-4,1,4,5}

Continuous

Domain { x | -00 & x < 00 }

Ronge { y 1 -00 6 x = 5 }

A roster is a list of the elements in a set, separated by commas and surrounded by French curly braces.

{2, 3, 4, 5, 6} is a roster for the set of integers from 2 to 6, inclusive.

Set-builder notation is a mathematical shorthand for precisely stating all numbers of a specific set that possess a specific property.

The set $\{x \mid x > 0\}$ is read aloud, "the set of all x such that x is greater than 0."

EXAMPLES

Find the domain and range of the relations.

The graph of y = H(x) is given.

b. For what value(s) of x is
$$H(x) = 3$$
? 2 and $\frac{2}{3}$

c. Write the domain and range of

d. Determine the domain for which the function is increasing.

e. Determine the domain for which the function is decreasing.

$$-44 \times 4 -2$$

f. Determine the domain for which the function is constant.

$$\begin{bmatrix} -2 \\ -2 \le x \le 1 \end{bmatrix}$$

I THINK I GOT IT?

1. Write the domain and range of the relations in set builder notation and interval notation.

Domain: All Reds

(-∞, ∞) All Recls (-∞, ∞) Ronge :

- 2. The graph of y = f(x) is given.
 - a. Find f(-3). -3
 - b. For what value(s) of x is f(x) = 2? 2 and 0 Y=2
 - c. Write the domain of f. $-3 \le x \le 3$ [-3,37
 - d. Write the range of f.

e. Determine the domain for which the function is constant.

Domain: All Red) $(-\infty, \infty)$

Ronge: y 43 $(-\infty, 3]$

