Unit Intro to Functions

Day 5 Linear Functions Day 1

I can ...

... determine if a function is linear by determining if it has a rate of change.

Which graph is linear?

Which equation is linear?

1.
$$f(x) = \frac{2}{3}x + 4$$

2. $g(x) = x^2 + 3x - 28$

$$3. \quad h(x) = \left|-5x\right|$$

Which table is linear?

Input (x)	Output (y)
0	0
1	-3
2	-4
3	-3
4	0

Input (x)	Output (y)
-1	9
0	5
1	1
2	-3
3	-7

Input (x)	Output (y)
0	1
1	2
2	4
3	8
4	16

Which table is linear?

Input (x)	Output (y)
0	0
1	-3
2	-4
3	-3
4	0

Input (x)	Output (y)
-1	9
0	5
1	1
2	-3
3	-7

Input (x)	Output (y)
0	1
1	2
2	4
3	8
4	16

A linear function is a function that has a constant rate of change. Its graph is a straight line.

A <u>*slope*</u> of a line is a ratio that compares a vertical change to the corresponding horizontal change. You can also describe slope as a rate of change. A <u>*rate of change*</u> is a comparison between two quantities that are changing.

slope (rate of change) = $\frac{\text{vertical change}}{\text{horizontal change}} = \frac{\Delta y}{\Delta x}$

Consider the following set of ordered pairs.

 $\{(2, 1), (5, 3), (8, 5), (11, 7)\}$

You can find the rate of change from a table by finding the change in the inputs and the change in the outputs.

rate of change =
$$\frac{\text{change in output}}{\text{change in input}}$$

Does the table represent a linear function?

EXAMPLES

Does the relation defined by each table represent a linear function? Explain.

Input	Output
0	2
1	4
2	7
3	8
4	10

•	Input	Output
	0	0
	3	1
	6	3
	9	6
	12	10

Is the relation, shown in the table, a function? And if so, is it a linear function?

Input	Output
1	10
2	13
3	16
4	19
5	22

I THINK I GOT IT?

1. Does the relation defined by the table represent a linear function? Explain.

Input	Output
-10	8
-5	5
0	2
5	-1
10	-4
A REAL PROPERTY AND A REAL PROPERTY AND	establish the state

I GOT IT!

2. Is the relation, shown in the table, a function? And if so, is it a linear function? Explain.

Input (x)	Output (y)
0	3
1	5
2	8
3	12
4	17

ANSWERS: 1) Yes the rate of change is, $\frac{\Delta y}{\Delta x} = \frac{-3}{5}$. 2) Yes, it is a function. Each input has exactly one output. No, it is not a linear function because it does not have a constant rate of change.

PRACTICE

1. a. Create a mapping diagram for the following set of ordered pairs. Is the relation a function?

 $\{(1, -3), (2, -4), (3, -5), (4, -6), (4, -7)\}$

.

b. Is the relation a linear function? (hint: make a table.)

2. Which graph is a function?

4

3. Write a relation that is represented by the mapping diagram. Is it a function?

4. Is the function a linear function? Explain.

	y
-4	-6
-2	-4
0	-2
2	0
4	2

5. Which table(s) represent a linear function? For each table that is a linear function, state the rate of change.

Α.	×	y	в.	×	у	c.	*	y
		0		0	0		-3	6
	1	3		1	-3		-2	2
	2	6		2	-6		-1	1
	3	9		3	-9		0	0

Unit Intro to Functions

Day 5 Linear Functions Day 1

I can ...

... determine if a function is linear by determining if it has a rate of change.

Which graph is linear?

Which equation is linear?

Which table is linear?

Input (x)	Output (y)	
0	0	
1	-3	
2	-4	
3	-3	
4	0	

Input (x)	Output (y)		
-1	9		
0	5		
1	1		
2	-3		
3	-7		

Input (x)	Output (y)	
0	1	
1	2	
2	4	
3	8	
4	16	

A linear function is a function that has a constant rate of change. Its graph is a straight line.

A <u>slope</u> of a line is a ratio that compares a vertical change to the corresponding horizontal change. You can also describe slope as a rate of change. A <u>rate of change</u> is a comparison between two quantities that are changing.

slope (rate of change) = $\frac{\text{vertical change}}{\text{horizontal change}} = \Delta y$

Consider the following set of ordered pairs.

$$\{(2, 1), (5, 3), (8, 5), (11, 7)\}$$

You can find the rate of change from a table by finding the change in the inputs and the change in the outputs.

Does the table represent a linear function?

EXAMPLES

Does the relation defined by each table represent a linear function? Explain.

No, there is not a constant rate Of change.

b. Input Output 0 +1 +3 1 3 +2 + 3 3 6 6 9 10 12

Is the relation, shown in the table, a function? And if so, is it a linear function?

Yes this is a function because every input has one output.

Yes this is a linear function because there is a constant rate of conange = 3

I THINK I GOT IT?

1. Does the relation defined by the table represent a linear function? Explain.

Yes, because there is a constant rate of change =

I GOT IT!

2. Is the relation, shown in the table, a function? And if so, is it a linear function? Explain.

ANSWERS: 1) Yes the rate of change is, $\frac{\Delta y}{\Delta x} = \frac{-3}{5}$. 2) Yes, it is a function. Each input has exactly one output. No, it is not a linear function because it does not have a constant rate of change.

PRACTICE

1. a. Create a mapping diagram for the following set of ordered pairs. Is the relation a function?

No, its not even a function

 $\{(1, -3), (2, -4), (3, -5), (4, -6), (4, -7)\}$

b. Is the relation a linear function? (hint: make a table.)

2. Which graph is a function?

3. Write a relation that is represented by the mapping diagram. Is it a function?

4. Is the function a linear function? Explain.

5. Which table(s) represent a linear function? For each table that is a linear function, state the rate of change.

