I can generate equivalent expressions using the properties of math

Operations Involving Rational Numbers

Addition

1.	2 + (-5) =	28 + (-3) =	312 + 4 =	49 + (-1) =

5. 7.6 + 9.5 = ----- 6. $\frac{2}{7} + \frac{4}{7} = -----$ 7. $\frac{1}{2} + \frac{3}{8} = -----$ 8. $\frac{2}{3} + \frac{5}{9} = -----$

Subtraction

- 1. 4 10 =_____ 2. 6 (-7) =____ 3. -9 5 =____ 4. -3 (-1) =____
- 5. 0.9 0.5 = 6. $\frac{5}{11} \frac{2}{11} =$ 7. $\frac{7}{12} \frac{1}{4} =$ 8. $\frac{9}{10} \frac{3}{5} =$

Multiplication

1.	$-3 \cdot 5 = $	2. $-13 \cdot -6 = $	3. 12(-2) =	420(-4) =
5.	$3 \cdot (-4)^3 = $	6. $\frac{1}{4} \cdot \frac{3}{4} = $	7. $\frac{2}{5} \cdot \frac{1}{3} = $	8. $5 \cdot \frac{2}{3} = $

Division

1.
$$121 \div (-11) =$$
 2. $-36 \div (-9) =$
 3. $\frac{6}{-3} =$
 4. $\frac{-60}{-12} =$

 5. $-64/5 =$
 6. $\frac{3-17}{2} =$
 7. $\frac{2^3}{-8} =$
 8. $\frac{2}{9} \div \frac{1}{3} =$

Properties of Numbers

Mon omial	Bi nomial	Tri nomial	Poly nomial

Identity Properties	Inverse Properties
Additive Identity	Additive Inverse
Multiplicative Identity	Multiplicative Inverse (Reciprocal)

Distributive Property:

$$3(2x+6) =$$

1. 2(-5x-1) = 2. -5(4x-2y) = 3. -(7x+3y-2z) =

4.
$$\frac{1}{4}(-8r - 12s + 4t) = 5.$$
 $4(3a + 5b - c + 2d - 8e - 4g) =$

Some Word Problems

1. Jennifer paid \$39.75 for some packs of gum. If each pack of gum costs \$1.59, how many packs of gum did Jennifer buy?

2. This month, Gerald deposited \$12.50 into his bank account but then withdrew \$8.75 a few days later. If Gerald started the month with \$83.95, how much money does he have in his bank account now?

<u>Commutative Property</u>	<u>Associative Property</u>
Commutative Property of Addition	Associative Property of Addition
Commutative Property of Multiplication	Associative Property of Multiplication

Can we identify some of these properties? **Property Bank**

Additive Identity	Multiplicative Inverse	Commutative Property	Distributive Property
Associative Property	Additive Inverse	Multiplicative Identity	

3 + 7 = 7 + 3	$6 \cdot 1 = 6$	$5(4+2) = 5 \cdot 4 + 5 \cdot 2$
$5 \cdot \frac{1}{5} = 1$	-5 + 0 = -5	(6+4) + 5 = 6 + (4+5)
5(2x - 3y) = 10x - 15y	$3 \cdot (-2) \cdot 7 = (-2) \cdot 7 \cdot 3$	0 + a = a
$-2(3\cdot 6) = (-2\cdot 3)\cdot 6$	$-\frac{6}{7} \cdot \left(-\frac{7}{6}\right) = 1$	$1 \cdot \frac{21}{23} = \frac{21}{23}$

Combining Like Terms

Let's take a look at some vocabulary before we begin.

2x + 3

		Like Te	rms		Unlike Te	erms	
Sin	nplify each	Expression by Com	bining the Like T	`erms]
1.	3x + 6x	2.	-6y - 8y		3.	3y - 8 + 6y	
4.	4x + 8y	5.	4a + 6b - 3c + 7b	0 − 2a − c	6.	$5x^2 - 3 - 6x - $	$3x^2 - 4x + 9$
7.	3(3x-4)	+5 8.	$-2(x^2+6x) + 3$	$3(x-4x^2)$	9.	3(2x-5y) -	(4x+7y)

10. Identify the Property Used to simplify the following Expression.

$$5(x - 2) - 2(x - 5)$$

$$5x - 10 - 2x + 10$$

$$5x - 2x - 10 + 10$$

$$\frac{1}{2}$$

$$3x + 0$$

$$3x$$

Some More to Practice:

1. If $A = 3x^2 + 5x - 6$ and $B = -2x^2 - 6x + 7$, find A - B

2. Subtract $5x^2 + 2x - 11$ from $3x^2 + 8x - 7$. Express the result as a trinomial.

3. If the difference $(3x^2 - 2x + 5) - (x^2 + 3x - 2)$ is multiplied by $\frac{1}{2}x^2$ what is the result written in standard form?

Multiplying Polynomials

Giselle computed 342 × 23 as follows:

Can you explain what she is doing? What is her final answer?

$\mathbf{\times}$ $(12x^2)(4x^2)$	$\ddagger{12x^2 \div 4x^2}$
$\left(4x^2y^5\right)\!\left(6x^3y^2\right)$	$\frac{-10x^5}{2x}$
Rule:	Rule:

Use a Geometric Model to compute the following products

Strategies for Simplifying Without the Geometric Model

$$(3x^2+4x+2)(2x+3)$$

Let's See What You Got!!

1. $(4x+3)(x^2+x^3)-(2x+2)(x^2+x^3)$

2. $3(x-2)^2 - 2(x-1)$

3. Fred is given a rectangular piece of paper. If the length of the piece of paper is represented by 2x-6 and the width is represented by 3x-5, find the perimeter and area of the piece of paper in terms of *x*.

4. When $(2x-3)^2$ is subtracted from $5x^2$, the result is...

I can generate equivalent expressions using the properties of math

Operations Involving Rational Numbers

Addition

1.
$$2 + (-5) = \frac{-3}{2}$$

2. $-8 + (-3) = \frac{-11}{3}$
3. $-12 + 4 = \frac{-8}{4}$
4. $-9 + (-1) = \frac{-10}{2}$
5. $7.6 + 9.5 = \frac{17.1}{6}$
6. $\frac{2}{7} + \frac{4}{7} = \frac{6}{7}$
7. $\frac{1}{2} + \frac{3}{8} = \frac{7}{8}$
8. $\frac{2}{3} + \frac{5}{9} = \frac{12}{9}$
 $\frac{4}{9} + \frac{3}{8} = \frac{6}{8}$
8. $\frac{2}{3} + \frac{5}{9} = \frac{12}{9}$

Subtraction

1. $4-10 = \frac{-6}{2}$ 2. $6-(-7) = \frac{13}{3}$ 3. $-9-5 = \frac{-14}{4}$ 4. $-3-(-1) = \frac{-2}{2}$ 5. $0.9-0.5 = \frac{0.4}{6}$ 6. $\frac{5}{11} - \frac{2}{11} = \frac{3}{11}$ 7. $\frac{7}{12} - \frac{1}{4} = \frac{1}{3}$ 8. $\frac{9}{10} - \frac{3}{5} = \frac{3}{10}$ $\frac{7}{12} - \frac{3}{12} = \frac{4}{12}$ 9. $\frac{9}{10} - \frac{6}{10}$

Multiplication

1. $-3 \cdot 5 = -15$ 2. $-13 \cdot -6 = -78$ 3. 12(-2) = -244. -20(-4) = 805. $3 \cdot (-4)^3 = 192$ 6. $\frac{1}{4} \cdot \frac{3}{4} = -\frac{3}{16}$ 7. $\frac{2}{5} \cdot \frac{1}{3} = -\frac{2}{15}$ 8. $5 \cdot \frac{2}{3} = -\frac{3}{3} - \frac{3}{3}$

Division
1.
$$121 \div (-11) = -11$$
 2. $-36 \div (-9) = -4$ 3. $\frac{6}{-3} = -2$ 4. $\frac{-60}{-12} = -5$
5. $-64/5 = -12\frac{4}{5}$ 6. $\frac{3-17}{2} = -7$ 7. $\frac{2^3}{-8} = -1$ 8. $\frac{2}{9} \div \frac{1}{3} = -\frac{2}{3}$
 $-\frac{14}{2}$ 3. $\frac{2}{-3} = -1$ 8. $\frac{2}{9} \div \frac{1}{3} = -\frac{2}{3}$

Some Word Problems

1. Jennifer paid \$39.75 for some packs of gum. If each pack of gum costs \$1.59, how many packs of gum did Jennifer buy?
X • 1.59 = 39.75

1.59 1.59

X = 25 packs of gum2. This month, Gerald deposited \$12.50 into his bank account but then withdrew \$8.75 a few days later. If Gerald started the month with \$83.95, how much money does he have in his bank account now? \$83.95 + \$12.50 - \$8.75

\$ 87.70

What can you do with these properties?

Commutative Property	Associative Property
(+ , ×	+, ×
Switch order of terms	switch grouping () of terms
Commutative Property of Addition	Associative Property of Addition
a + x + y = y + x + a	(a+b)+c = a+(b+c)
Commutative Property of Multiplication	Associative Property of Multiplication
4.3 = 3.4	$(2.3) \cdot 4 = 2 \cdot (3.4)$

Can we identify some of these properties? **Property Bank**

Additive Identity	Multiplicative Inverse	Commutative Property	Distributive Property
Associative Property	Additive Inverse	Multiplicative Identity	

$$3+7=7+3$$
 $6\cdot 1=6$ $5(4+2)=5\cdot 4+5\cdot 2$ CommutativeIdentityDistributive $5 \cdot \frac{1}{5} = 1$ $-5+0=-5$ $(6+4)+5=6+(4+5)$ InverseIdentityAssociative $5(2x-3y)=10x-15y$ $3\cdot(-2)\cdot7=(-2)\cdot7\cdot3$ $0+a=a$ Distributive $3\cdot(-2)\cdot7=(-2)\cdot7\cdot3$ $0+a=a$ $-2(3\cdot6)=(-2\cdot3)\cdot6$ $-\frac{6}{7}\cdot\left(-\frac{7}{6}\right)=1$ $1\cdot\frac{21}{23}=\frac{21}{23}$ AssociativeInverseIdentity

Combining Like Terms

Let's take a look at some vocabulary before we begin.

10. Identify the Property Used to simplify the following Expression.

$$5(x-2) - 2(x-5)$$

$$5x - 10 - 2x + 10$$

$$5x - 2x - 10 + 10$$

$$1. Commutative prop +$$

$$1. Combining Like Terms$$

$$2. Inverse Prop of +$$

$$3x + 0$$

$$3x + 0$$

Some More to Practice:

1. If
$$A = 3x^2 + 5x - 6$$
 and $B = -2x^2 - 6x + 7$, find $A = B$
 $3x^2 + 5x - 6 - (-2x^2 - 6x + 7)$
 $3x^2 + 5x - 6 + 2x^2 + 6x - 7$
 $5x^2 + 11x - 13$

3. If the difference $(3x^2 - 2x + 5) - (x^2 + 3x - 2)$ is multiplied by $\frac{1}{2}x^2$ what is the result written in standard form?

Giselle computed 342×23 as follows:

Can you explain what she is doing? What is her final answer?

She is adding up products of like place values 342 × 23 = 6000 + 1700 + 160 + 6 8 7866

Before we begin let's review basic exponent rules

×	÷
$(12x^2)(4x^2)$	$12x^2 \div 4x^2$ $12 \cdot x \cdot x$
48 × 4	
$(4x^2y^5)(6x^3y^2)$	$\frac{-10x^5}{x^5} = 10 \times 10$
24x5,7	2x 2·×
Pula	-S κ ⁴
t exponents	KUIC:

Use a Geometric Model to compute the following products

$$(3x^{2} + 4x + 2)(2x + 3) \qquad (x - 1)(x^{3} + 6x - 5)$$

$$3x^{2} + 4x + 2 \qquad (x - 1)(x^{3} + 6x - 5)$$

$$2x \quad 6x^{3} \quad 8x^{2} \quad 4x \qquad x^{3} \quad x^{4} \quad -x^{3}$$

$$+3 \quad 9x^{2} \quad 12x \quad 6 \qquad +6x \quad 6x^{3} \quad -6x$$

$$-5 \quad -5x \quad 6$$

$$\chi^{4} + 5x^{3} \quad -11x + 6$$

Strategies for Simplifying Without the Geometric Model

 $(3x^2+4x+2)(2x+3)$

- Distribute each individual term (to the impindividual terms of the other factor

 $3x^2 - 14x + 14$

3. Fred is given a rectangular piece of paper. If the length of the piece of paper is represented by 2x-6 and the width is represented by 3x-5, find the perimeter and area of the piece of paper in terms of x. 3x-5

Perimeter 2x-6

2x+3x+2x+3x = 10x

-5-6-5-6 -27

10x - 22

Zx-6

 $6x^{2} - 10x - 18x + 30$

6x2 - 28x + 30

4. When $(2x-3)^2$ is subtracted from $5x^2$, the result is...

$$5x^{2} - [(2x-3)(2x-3)]$$

$$5x^{2} - [4x^{2}-6x-6x+9]$$

$$5x^{2} - 4x^{2} + 6x + 6x - 9$$

$$x^{2} + 12x - 9$$