I can calculate the area and perimeter of basic shapes and composite shapes Basic Area and Perimeter
Area Perimeter

12 cm .

8 cm .

F:

S:

S:

F:

S:

S:
Area
:
:

S:
Area
Perimeter
$\mathrm{S}:$
F:

S:

$$
\mathrm{F}:
$$

S:

S:
S.

F:

S:

S:

Area
F:

$$
\mathrm{S}:
$$

F:
$\mathrm{S}:$
$\mathrm{S}:$

Perimeter

F:
$\mathrm{S}:$

S:

Isosceles Trapezoid
F:

$\mathrm{S}:$

S:

Regular Hexagon

F:

Area

S:

S:

Circles

Area In Terms of $\boldsymbol{\pi}$

F:

S:

S:
S:

Area To the Nearest Hundredth

F:

S :

S:

Area To the Nearest Hundredth

S:

Area In Terms of π

F:

S:

S:

Area To the Nearest Hundredth
$\mathrm{S}:$

Find the radius of a circle if the Area is $49 \pi \mathrm{ft}^{2}$.

Find the diameter of a circle if the Area is $81 \pi \mathrm{~cm}^{2}$

Find the radius of a circle if the Circumference is $120 \pi \mathrm{in}^{2}$.

Find the diameter of a circle if the Circumference is $34 \pi \mathrm{yd}^{2}$

Composite Shapes

I can calculate the area and perimeter of basic shapes and composite shapes
Basic Area and Perimeter

Area
F: $\quad A=b \cdot h$
F: $P=$ Add 4 sides
s: $A=12 \cdot 8$
$s: \quad P=12+8+12+8$
s: $A=96 \mathrm{~cm}^{2}$

Square
Area
F: $\quad A=b \cdot h$
s: $\quad A=2 \frac{2}{3}-2 \frac{2}{3}$
$\mathrm{s}: P=2 \frac{2}{3}+2 \frac{2}{3}+2 \frac{2}{3}+2 \frac{2}{3}$
s: $\quad A=\frac{8}{3}-\frac{8}{3}$
s: $P=\frac{8}{3}+\frac{8}{3}+\frac{8}{3}+\frac{8}{3}$
$A=\frac{64}{9}=7 \frac{1}{9} f t^{2}$
$P=\frac{32}{3}=10 \frac{2}{3} \mathrm{ft}$

F: $A=b \cdot h$
F: $P=$ Add 4 sides
s: $A=15 \cdot 5$
s: $P=15+7+15+7$
s: $A=75 \mathrm{ft}^{2}$
$s: \quad p=44 \mathrm{ft}$

Area
F: $\quad A=\frac{b \cdot h}{2}$
s: $A=\frac{52.8 \cdot 33.6}{2}$
$s: A=887.04 \mathrm{~cm}^{2}$
F: $P=$ Add 3 sides
46.7 cm .
52.8 cm .
$s: \quad P=46.7+52.8+40.5$
$s: \quad A=887.04 \mathrm{~cm}^{2} \mathrm{~s}: \quad \quad \quad P=140 \mathrm{~cm}$

$$
\begin{array}{ll}
\text { F: } A=\frac{h \cdot\left(b_{1}+b_{2}\right)}{2} & \text { F: } P=\text { Perimeter } \\
\text { s: } A & A=\frac{7.4(10.5+1.5)}{2} \text { s: } P=10.5+8.25+1.5+8.25 \\
& A=44.4 \mathrm{in}^{2} \\
\mathrm{~s}: & P=28.5 \mathrm{in}
\end{array}
$$

$$
\begin{array}{ll}
\text { F: } A=\frac{b \cdot h}{2} \times 6 \Delta \text { 's: } & P=6 \cdot \text { sides } \\
\text { s: } A=\frac{6.5 .2}{2} \times 6 A_{\text {s s: }}^{\prime} & P=6 \cdot 6 \\
\text { s: } A=15.6 \times 6 \Delta \text { s: } &
\end{array}
$$

$$
A=93.6 \mathrm{~cm}^{2}
$$

Circles

$$
\text { F: } \begin{aligned}
A & =\pi \cdot r^{2} \\
A & =\pi \cdot 6^{2}
\end{aligned}
$$

s:
\qquad S:

$$
\mathrm{s}: A=36 \pi \mathrm{~cm}^{2}
$$

Area To the Nearest Hundredth
$\mathrm{s}: 113.10 \mathrm{~cm}^{2}$

$$
\begin{aligned}
& c=2 \cdot \pi \cdot r \\
& c=\pi \cdot d \\
& C=2 \cdot \pi \cdot 6 \\
& C=12 \pi \\
& c=0 r \\
& C=37.70 \mathrm{~cm}
\end{aligned}
$$

Circumference

F: $\quad C=\pi \cdot d$
$\mathrm{s}: \quad C=16 \pi \mathrm{ft}$ or
$C=50.27 \mathrm{ft}$
Area To the Nearest Hundredth
$s: A=201.06 \mathrm{ft}^{2}$

Circumference
F: $A=\pi \cdot r^{2} \quad$ F: $\quad C=\pi \cdot d$

Area To the Nearest Hundredth

$$
A=70.88 \mathrm{~cm}^{2}
$$

Find the radius of a circle if the Area is $49 \pi \mathrm{ft}^{2} \quad A=\pi r^{2}$

$$
49 \pi=\pi r^{2}
$$

Find the diameter of a circle if the Area is $81 \pi \mathrm{~cm}^{2}$

$$
7 \mathrm{ft}=\mathrm{r}
$$

$$
\begin{gathered}
A=\pi r^{2} \\
81 \pi=\Delta t r^{2} \\
9 \mathrm{ft}
\end{gathered}=r \rightarrow d=18 \mathrm{ft} \quad \text {. }
$$

$$
C=2 \cdot \pi \cdot r
$$

Find the radius of a circle if the Circumference is 120π in 2.
$\frac{120}{2} \pi=\frac{2 \cdot \pi}{2} \cdot r$

$$
60 \text { in }=r
$$

Find the diameter of a circle if the Circumference is $34 \pi \mathrm{yd}^{2}$

Composite Shapes

$$
\begin{gathered}
c=2 \cdot \pi \cdot r \\
\frac{34 \pi}{2}=\frac{2 \cdot \pi \cdot r}{2} \\
17=r \\
34 y d=d
\end{gathered}
$$

Scmi-Circle

$$
A=\pi r^{2} \div 2
$$

$$
\begin{aligned}
A & =\pi \cdot 8^{2} \div 2 \\
A & =\pi \cdot 64 \div 2 \\
A & =32 \pi \\
& =100.53 \mathrm{in}^{2}
\end{aligned}
$$

Total Area

$$
A=\frac{b \cdot h}{2}
$$

$$
292.53 \mathrm{in}^{2}
$$

$$
A=192 \mathrm{in}^{2}
$$

Shaded Area $=\Delta-0$

$$
A=\frac{b \cdot h}{2}
$$

$$
A=\frac{24 \cdot 24}{2}
$$

$$
A=288 \mathrm{yd}^{2}
$$

$$
\begin{aligned}
& A=\pi r^{2} \\
& A=\pi .8^{2} \\
& A=201.06
\end{aligned}
$$

Shaded Area

$$
86.94 \mathrm{yd}^{2}
$$

