Some Key Vocabulary to Keep in Mind
 Unit A: Expressions and Equations
 Topic 1

$>$ Expression $(\mathrm{NO}=\mathrm{SIGN})$ vs. Equation (EQUAL SIGN)
> Numerical Expression: contains numbers and operational symbols
> Algebraic Expressions: contains numbers, variables, and operational symbols
> Order of Operations:

$$
\begin{aligned}
& \mathbf{P}-() \\
& \mathbf{E}-\text { Exponents } \\
& \mathbf{M} \leftarrow \mathbf{D} \\
& \mathbf{A} \leftrightarrow \mathbf{S}
\end{aligned}
$$

$>$ Exponents: $4^{3}=4 \cdot 4 \cdot 4$ or 64,4 is the Base and 3 is the Exponent or Power
> Variable: (Unknown) Letter / Coefficient: \# in front of Variable / Constant: Number All Alone
$>$ Term: Either a single number or a variable, or number and variable multiplied together separated by a + or - sign.
$>$ Sum (+), Difference (-), Product (×) Factors (\#'s being Multiplied), Quotient (-)

Topic 2

(Equivalent Numerical Expressions: When you evaluate them, they equal the same value.
$>$ Identity Property of Addition: $3+0=3$
> Identity Property of Multiplication: 7•1=7
$>$ Zero Property of Multiplication: $5 \cdot 0=0$
$>$ Commutative Property of Addition/Multiplication: 3•4=4•3
$>$ Associative Property of Addition/Multiplication: $3+(4+6)=(3+4)+6$
$>$ Distributive Property: $3(4 x+5)=12 x+15$
> Greatest Common Factor: Highest number that divides evenly into two or more numbers
Find the GCF of 24 and 18.

$G C F=6$
$>$ Least Common Multiple: SKIP COUNT. First \# the two or more numbers have in common.
Find the LCM of 8 and 12.
$8: 8,16,24,32,40(48,56,64 \ldots$
$12: 12,24$, $36,48,60$
$L C M=24$
$>$ Prime Numbers: Only 2 factors, 1 and itself.
$>$ Prime Factorization: Factor Tree \rightarrow Find the Prime Factorization of 56
> $y+y+y+y=4 y$ while $\mathrm{y} \cdot \mathrm{y} \cdot \mathrm{y} \cdot \mathrm{y}=y^{4}$

2

$$
2^{3} \cdot 7
$$

Topic 3

> Solve and Check the Following Equation:

$$
\begin{aligned}
& 3 x-85 \\
&+5=13 \\
& 3 x=\frac{18}{3}
\end{aligned}
$$

$>$ Inverse Operations: Operations that Undo Each Other.
$>\mathrm{O} \rightarrow<$ and $>\quad 0 \rightarrow \leq$ and \geq
$>$ Equations have ONE Solution. Inequalities have INFINITE Solutions.

Topic 4

> Dependent Variable: Changes in response to another Variable (y)
> Independent Variable: Affects change on the Dependent Variable (x)

Unit B: Number System Part 1

Topic 5 and Topic 6

$>$ Numerator: Top of Fraction / Denominator: Bottom of Fraction
> Improper Fraction: Top is Bigger than Bottom / Proper Fraction: Top is Smaller than Bottom
> Mixed Number: A Whole Number and a Fraction
$>$ Simplest Form $=$ Lowest Terms
$>$ Reciprocals: $\frac{3}{7} \rightarrow \frac{7}{3}$
$>$ If the Product of TWO Numbers is $1 \rightarrow$ The numbers are RECIPROCALS
> Multiply

$$
\begin{array}{ll}
4 \cdot 5 \frac{3}{8} & 4 \frac{2}{3} \div \frac{7}{9} \\
\frac{14}{1} \cdot \frac{43}{8}=\frac{43}{2}: 21 \frac{1}{2} \quad & \frac{14}{3} \div \frac{7}{9} \\
& \frac{24}{28} \cdot \frac{9^{3}}{x_{1}}=\frac{6}{1}=6
\end{array}
$$

$>$ Rational Numbers: Can be written as a simple fraction.
> Adding/Subtracting with Decimals: LINE UP DECIMAL POINTS
$>$ Multiplying with Decimals: Ignore the decimal point and multiply normally. Then count how many decimal places the 2 numbers have combined. Starting at the right of your answer, move that many decimal places to the left and place the decimal point.
> Dividing with Decimals: Move the point to the right to make the divisor a whole number. Move the decimal the same amount of spaces to the right in the dividend.

Topic 8

$>$ On a Number Line: Smaller Numbers \longleftrightarrow Larger Numbers
> Opposite of a Number: $8 \rightarrow-8 /-8 \rightarrow 8 /-(-8)=8$
> Absolute Value: $|-9|=9 /|9|=9 /-|-9|=-9$
$>$ Distance is Always Positive
$>$ Ordered Pair or Coordinates $(x, y): x$: side to side y : up and down
> Quadrants:

Topic 9

> Converting a Decimal to Fraction: 0.84 is eighty-four hundredths or $\frac{84}{100}=\frac{21}{25}$
$>$ Converting Fraction to Decimal: DIVIDE \rightarrow Top Number Goes "In the House."
$>$ Equivalent Fractions: Two Fractions that Are Equal \rightarrow Same Decimal

Unit D: Ratio and Proportional Relationships

Topic 10

$>$ Ratio: Relationship for every x units of one quantity there are y units of another quantity.
> Representing a Ratio:

- Using a Colon: 9:16
- Fraction: $\frac{9}{16}$
- Decimal: 0.5625
- Words: For every 9 fiction books, Billy has 16 non-fiction books.
> Equivalent Ratios express the same relationship
- Same Decimal / Equal Cross Products / Will Reduce to Same Fraction.
$>$ You can find equivalent ratios by multiplying or dividing each term of the ratio by the same nonzero number.

Topic 11

> Rate: A ratio involving 2 quantities measured in Different Units.
> Unit Rate/Price: A Rate/Price for ONE UNIT. Unit Rate as a Fraction the Denominator is 1.
> Conversion Factors are used to convert 2 Units of Measure

- Reference Sheet has Many Conversion Factors
- 1 Yard $=3$ Feet
- 1 Foot = 12 Inches
- 1 Yard - 36 Inches

Topic 12

> Proportional Relationship: Goes Through (0, 0)
$>$ Slope of a Proportional Relationship: $\frac{\text { rise }}{\text { run }}=\frac{\text { change in } y}{\text { change in } x}$
$>$ Percents: $\frac{\%}{100}=\frac{\text { part }}{\text { whole }} \quad$ Proportion Application: $\frac{\%}{100}=\frac{\text { is }}{\text { of }}$
> Tax / Tip / Markup / Interest: Calculate the Percent and ADD to Total.
> Discount / Markdown: Calculate the Percent and SUBTRACT from Total.

Unit E: Geometry

Topic 13

> Polygon: A closed figure formed by 3 or more line segments
$>$ Vertex: Any point where two sides of a polygon meet
> Parallel Lines DO NOT Cross / Perpendicular Lines Meet AT A 90º ANGLE
> Area:

- Square: Area $=(\text { side })^{2}$
- Rectangle: Area $=$ base \times height
- Parallelogram: Area $=$ base \times height
- Triangle: Area $=\frac{\text { base } \times \text { height }}{2}$
- Trapezoid:

$$
\text { Area }=\frac{h \cdot\left(b_{1}+b_{2}\right)}{2}
$$

> Base and Height Make a Right Angle (Perpendicular)
> Area of Polygon: Split Shape Up into Squares, Rectangles, and Triangles and Add together all Area
$>$ Area of the Shaded Region: Area of Big Shape - Area of Smaller Missing Piece

Topic 14

> Face: Sides of a 3D Solid / Edge: Where 2 Faces meet / Vertex: Corner
> Name a polygon by its Base (Bottom)

- Prisms: 2 Parallel and Identical Bases
- Pyramids: Faces meet at a Single Vertex
> Net: Flat Representation of ALL Sides of a 3D solid.
> Surface Area: ADD up AREA of ALL SURFACES
> Volume: How much Space is Inside a Solid
- Rectangular Prism: Volume $=$ length \times width \times height

