Surface Processes Review Note Cards

Evaporation Transpiration Condenstation Precipitation Infiltration Runoff

Water Cycle

The moving of water along the Earth's surface (the ground).

Surface Processes

Runoff

Water seeping into the ground.

Infiltration

particle size, permeability

Permeable

Surface Processes

"The ability to allow water to move through a substance."

Impermeable

"Material that does not allow water to pass through." Increases runoff.

A Horizon **B-Horizon**

C-Horizon-(Impermeable Rock)

O Horizon-(Organic, Humus)

Soil Profile

Top layer of regolith containing the most organic material, the most weathered rock & the most biological activity.

Topsoil

The layer of soil below topsoil, rich in clay sized sediments and minerals but little organics. Just below is partly weathered bedrock.

Subsoil

Bedrock

Surface Processes

Impermeable, solid, unweathered rock layer, generally below the Earth's surface.

Groundwater Zones

zone of aeration

zone of saturation

Zone above the water water table that has air in its pore (empty) spaces.

Zone of Aeration

Water Table

The interface (boundary) between the Zone of Aeration and the Zone of Saturation.

Zone of Saturation

Zone below the water water table that has water in its pore spaces (the groundwater).

"The amount of open space between particles." Rounded Particles, Porosity Tightly packed, | Porosity Sorted, Porosity Particle Size is <u>NOT</u> a factor

Porosity

Permeability

"The ability for water to pass through." Rounded Particles, Permeability Tightly packed, Permeability Sorted, Permeatility

"The ability of water to rise upward against gravity." Particle Size, Capillarity

Capillarity

Weathering

'The chemical & physical breaking of rock into smaller pieces." Physical (cool climates) & Chemical (warm + humid)

Resistance to Weathering

material.

Some minerals are more resistant to weathering than others resulting in different amounts of loss of rock

Physical Weathering

"The breaking of rock into smaller pieces without changing anything but its size."

Frost Action or Ice Wedging

Physical weathering caused by freezing (expanding)/thawing (& adding more liquid) of water.

Abrasion

Physical weathering caused by rocks rubbing, bouncing or hitting each other.

Can be either Wind or Water

Exfoliation

Physical weathering of large sheets of rock due to heating (expanding) and cooling (contracting) by Sunlight.

Other Physical Weathering

push rock apart. • Gravity – falling cause breakage.

Plant Roots – expand openings and

Chemical Weathering

Heat increases the rate of chemical weathering

"The breaking of rock by changing the substances that make up the rock."

Oxidation

Chemical weathering when oxygen reacts with a material (ex. iron rusting)

Hydration

Chemical weathering where water causes changing the the substances that make up the rock.

Carbonation

Chemical weathering where carbon dioxide (carbonic acid) causes changing the substances that make up the rock (especially limestone).

