Volume and Surface Area

<table>
<thead>
<tr>
<th>Polyhedron</th>
<th>Prism</th>
<th>Cylinder</th>
<th>Pyramid</th>
<th>Regular Pyramid</th>
<th>Cone</th>
<th>Sphere</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Volume</td>
<td>Rectangular Prism</td>
<td>Triangular Prism</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------</td>
<td>-------------------</td>
<td>------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n-gonal Prism</td>
<td></td>
<td>Cylinder</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pyramid</td>
<td></td>
<td>Regular Pyramid</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cone</td>
<td></td>
<td>Sphere</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lateral Area</th>
<th>Rectangular Prism</th>
<th>Triangular Prism</th>
</tr>
</thead>
<tbody>
<tr>
<td>n-gonal Prism</td>
<td></td>
<td>Cylinder</td>
</tr>
<tr>
<td>Pyramid</td>
<td></td>
<td>Regular Pyramid</td>
</tr>
<tr>
<td>Cone</td>
<td></td>
<td>Sphere</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Surface Area</th>
<th>Rectangular Prism</th>
<th>Triangular Prism</th>
</tr>
</thead>
<tbody>
<tr>
<td>n-gonal Prism</td>
<td></td>
<td>Cylinder</td>
</tr>
<tr>
<td>Pyramid</td>
<td></td>
<td>Regular Pyramid</td>
</tr>
<tr>
<td>Cone</td>
<td></td>
<td>Sphere</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td>----------------</td>
<td></td>
</tr>
<tr>
<td>Rectangular Prism</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Triangular Prism</td>
<td></td>
<td></td>
</tr>
<tr>
<td>n-gonal Prism</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cylinder</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pyramid</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Regular Pyramid</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cone</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sphere</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Reference Sheet

Volume

<table>
<thead>
<tr>
<th>Shape</th>
<th>Formula</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cylinder</td>
<td>$V = Bh$</td>
<td>where B is the area of the base</td>
</tr>
<tr>
<td>Pyramid</td>
<td>$V = \frac{1}{3}Bh$</td>
<td>where B is the area of the base</td>
</tr>
<tr>
<td>Right Circular Cone</td>
<td>$V = \frac{1}{3}Bh$</td>
<td>where B is the area of the base</td>
</tr>
<tr>
<td>Sphere</td>
<td>$V = \frac{4}{3}\pi r^3$</td>
<td></td>
</tr>
</tbody>
</table>

Lateral Area (L)

<table>
<thead>
<tr>
<th>Shape</th>
<th>Formula</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Right Circular Cylinder</td>
<td>$L = 2\pi rh$</td>
<td></td>
</tr>
<tr>
<td>Right Circular Cone</td>
<td>$L = \pi rl$</td>
<td>where l is the slant height</td>
</tr>
</tbody>
</table>

Surface Area

<table>
<thead>
<tr>
<th>Shape</th>
<th>Formula</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sphere</td>
<td>$SA = 4\pi r^2$</td>
<td></td>
</tr>
</tbody>
</table>