Unit 11: Redox Reactions and Electrochemistry

Regents Chemistry

Ms. Monaghan

Name:

Class:

Table of Contents

Unit Learning Targets	4
Topic 1: Oxidation Reduction (Redox) Reactions	. 5
Topic 2: Spontaneity of Redox Reactions	19
Topic 3: Electrochemistry	25

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
1	2	3	4	5	6	7
	F	Α	В	С	D	
8	9	10	11	12	13	14
	Ε	F	Α	В	С	
15	16	17	18	19	20	21
	D	Ε	F	Α	В	
22	23 C	24 D	25 E	26 F	27 A	28
		Ľ	L	•	1	

May 2016

Unit Learning Targets- Unit 11: Properties of Solutions

Students will understand that by manipulating redox reactions we can create useful devices and processes in which electricity can flow due to a presence of movable charges

Topic 1: Oxidation-Reduction (Redox) Reactions

- 1. Assign oxidation numbers to species within a reaction
- 2. Identify whether or not a reaction is an oxidation- reduction (redox) reaction.
- 3. Identify, within a redox reaction, which species was oxidized and which was reduced.
- 4. Write the oxidation and reduction half-reactions for a redox reaction.
- 5. Balance ionic equations to show conservation of mass and charge.
- 6. Explain how redox reactions show conservation of charge.

Topic 2: Spontaneity of Redox Reactions

1. Use the Metal Reactivity Series (Table J) to determine whether or not a redox reaction will occur spontaneously.

Topic 3: Electrochemistry

- 1. Compare and contrast the two types of electrochemical cells: Voltaic and Electrolytic.
- 2. Identify the parts of an electrochemical cell
- 3. Determine the direction of electron flow, given the reaction equation.

<u>Vocabulary</u>

- \Box Redox Reactions
 - Oxidation Numbers
 - Conservation of Charge
 - Oxidation (LEO)
 - Reduction (GER)
 - \circ ¹/₂ Reactions
 - Activity of Metals or Nonmetals (Table J)
- \Box Electrochemistry
 - Energy Conversion
 - Chemical to Electrical
 - Electrical to Chemical

Electrochemical Cells

- Voltaic Cells (Batteries)
 - Anode (AN OX)
 - Cathode (RED CAT)
 - Salt bridge
 - Electrolytes
 - Spontaneous
- Electrolytic Cells
 - Electrolysis
 - Refining Metals
 - Electroplating
 - Recharging Batteries

BIG PICTURE!!!

How does Electricity Flow?

 \rightarrow Movable Charges from an ELECTRICAL SOURCE (BATTERY)

 \rightarrow Movable Charges from a CHEMICAL SOURCE (SOLUTION)

The Fruit and Vegetable Clock- HOW DOES IT WORK!?

First Viewing:

Observations:

	Lingering Questions:
Proposed Explanation: How does this potato clock work?	What questions/ wonderings do you have, that if answered could improve your understanding and explanation.
	Give me at least 2!!

Redox Reaction Reminders:

Complete the following questions on your own with no notes or help from friends. After each part, check your answers. If you score lower than an 80% (if you miss more than 1 question) on any part, see Ms. Monaghan for a mini-lesson to rehab that topic.

<u>Part 1-</u>	Part 1-Assigning Oxidation Numbers			
1. Wh	at is the formula of titanium (II a. TiO	l) oxide? b. Ti ₂ O	c. TiO ₂	d. Ti ₂ O ₃
2. Wh	at is the oxidation state of chlora1	rine in NaCl? b. +1	c. +3	d. +5
3. Wh	at is the oxidation state of nitro a. +1	b. $+3$	c. +2	d. +4
4. Wh	at is the oxidation number of cl a. +6	hromium in the chromate ion b. +3	n, CrO_4^{-2} ? c. +2	d. +8
5. Giv cha	en the following reaction: Zn(nges from:	s) + CuSO ₄ (aq) \rightarrow ZnSO ₄ (aq)	(q) + Cu(s) The oxidation nu	umber of Zn
	a. 0 to +2	b. +2 to 0	c. 0 to -2	d2 to 0

Part 2-Identifying Redox Reactions

1.	All chemical reactions have a conservation oa. mass, onlyb. charge and energy, only	f	c. mass a d. mass, c	nd charge, only charge, and energy
2.	Which equation shows conservation of both a. $Cl_2 + Br^- \rightarrow Cl^- + Br_2$ b. $Zn + Cr^{3+} \rightarrow Zn^{2+} + Cr$	mass and charge?	c. Cu + 2 d. Ni + Pl	$Ag^{+} \longrightarrow Cu^{2+} + Ag$ $b^{2+} \longrightarrow Ni^{2+} + Pb$
3.	Given the balanced ionic equation: 2Al(s) + Compared to the total charge of the reactants a. Less	$3Cu^{2+}(aq) \rightarrow 2Al^{3+}(aq)$, the total charge of the b. Greater	q) + 3Cu(s) e products is	c. The same
4.	During which process does an atom gain one a. Transmutation b. Oxidation	or more electrons? c. d.	Reduction Neutralizat	tion
5.	Which reaction is an example of an oxidation a. $AgNO_3 + KI \rightarrow AgI + KNO_3$ b. $Cu + 2 AgNO_3 \rightarrow Cu(NO_3)_2 + 2 AgNO_3 \rightarrow Cu(NO_3)_2 + 2 AgNO_3 \rightarrow Cu(NO_3)_2 + 2 HgO_3$ c. $2 KOH + H_2SO_4 \rightarrow K_2SO_4 + 2 HgO_3$	n reduction reaction? Ag		

d. $Ba(OH)_2 + 2 HCl \rightarrow BaCl_2 + 2 H_2O$

Part 3- Identifying Species Oxid	lized and Reduced			
 When a neutral atom undergoe a. decreases as it gain b. increases as it gain 	es oxidation, the atom's o as electrons s electrons	xidation state c. d d. ir	ecreases as it loses	s electrons s electrons
2. Which change in oxidation nu	mber indicates oxidation?)		
a1 to +2	b1 to -2	c. +	2 to -3	d. +3 to +2
 3. Which changes occur when Pt a. The Pt²⁺ gains elect b. The Pt²⁺ gains elect c. The Pt²⁺ loses elect d. The Pt²⁺ loses elect 	2 ⁺ is reduced? trons and its oxidation nu trons and its oxidation nu trons and its oxidation nu trons and its oxidation nu	mber increases mber decreases mber increases mber decrease	S. 2S. 3. S.	
4. Given the equation: $C(s) + H_2$	$O(g) \rightarrow CO(g) + H_2(g)$	Which sp	ecies undergoes re	eduction?
a. $C(s)$	b. C^{2+}	c. H	I ⁺	d. H ₂ (g)
5. Given the equation: $3Au(s) + Could is reduced as$	$2Fe^{+3}(aq) \rightarrow 3Au^{+2}(aq) +$	- 2Fe(s)	Cold is oridize	d as it lasse slastron
a. Gold is reduced as	it loses electrons	C.		u as it loses electron
b. Iron is reduced as i	t gains electrons	d	. Iron is Oxidized	as it gains electron

Part 4- Putting it All Together

Base your answers to questions 1 through 4 on the information below.

In a laboratory investigation, a student constructs a voltaic cell with iron and copper electrodes. Another student constructs a voltaic cell with zinc and iron electrodes. Testing the cells during operation enables the students to write the balanced ionic equations below.

Cell with iron and copper electrodes:	$Cu^{2+}(aq) + Fe(s) \rightarrow Cu(s) + Fe^{2+}(aq)$
Cell with zinc and iron electrodes:	$Fe^{2+}(aq) + Zn(s) \rightarrow Fe(s) + Zn^{2+}(aq)$

- 1. State evidence from the balanced equation for the cell with iron and copper electrodes that indicates the reaction in the cell is an oxidation-reduction reaction.
- 2. Identify the particles transferred between Fe²⁺ and Zn during the reaction in the cell with zinc and iron electrodes.
- 3. In terms of oxidation state, explain how you know zinc is oxidized.
- 4. In terms of electrons lost or gained, explain how you know zinc is oxidized.

NOTES

Redox Reminders

Half~Reactions

Redox Half-Reactions Practice

Name: _____

Identify the following half reactions as oxidation or reduction. THEN, complete the reaction showing electrons in the right place. The first one has been done for you.

Reduction or Oxidation?

1. <u>Oxidation</u>	Li	\rightarrow	$Li^{1+} + 1 e^{-1}$
2	Р	÷	P ³⁻
3	Ca ²⁺	\rightarrow	Ca
4	2 Br ¹⁻	÷	Br ₂
5	Fe ²⁺	÷	Fe ³⁺
6	Mn^{4+}	\rightarrow	Mn ⁷⁺
7	Fe ²⁺	\rightarrow	Fe
8	H_2	\rightarrow	2 H ¹⁺

NOTES

Balancing Half-Reactions

NOTES

Balancing Net Ionic Equations

Name:____

 $\rightarrow \text{Rb}^{+1}$

<u>Part 1:</u>

- □ Balance the half reactions in each pairing using the correct number of electrons.
- \Box Identify which is the oxidation and which is the reduction half reaction.
- □ Combine the half reactions in order to produce the **balanced** net ionic equation.

□ Explain or show how charge is conserved

1. Fe⁺³ + ____ e⁻¹ \rightarrow Fe⁺² and Zn \rightarrow Zn⁺² + ____ e⁻¹

2.	$Ca \rightarrow$	$Ca^{+2} + __$	e ⁻¹	and	Al ⁺³ +	$e^{-1} \rightarrow$	Al
----	------------------	------------------	-----------------	-----	--------------------	----------------------	----

3. $Sr^{+2} \rightarrow Sr$ and Rb

Part 2:

- ☐ Write balanced oxidation and reduction half reactions for each of the following (indicating which is which)
- \Box Combine the half reactions in order to produce the balance the given net ionic equation.

4. $Fe^{+3} + Mg \rightarrow Mg^{+2} + Fe^{+2}$

5. Ba + Al⁺³
$$\rightarrow$$
 Ba⁺² + Al

6. ____ Al + ____
$$Ti^{+4} \rightarrow ___ Al^{+3} + ___ Ti$$

7.
$$H^{+1} + Zn \rightarrow Zn^{+2} + H_2$$

Redox and Half Reactions Regents Practice

Name: _____

1.	Which balanced equation represents an oxidation-reduction $(1) BaCl_2 + Na_2SO_4 \rightarrow BaSO_4 + 2NaCl$ (2) C+H ₂ O \rightarrow CO + H ₂	tion reaction? (3) $CaCO_3 \rightarrow CaO + CO_2$ (4) $Mg(OH)_2 + 2HNO_3 \rightarrow Mg(NO_3)_2 + 2H_2O$
2.	Given the balanced ionic equation representing a reacting $2Al^{3+}(aq) + 3Mg(s) \rightarrow 3Mg^{2+}(aq) + 2Al(s)$ In this reaction, electrons are transferred from (1) Al to Mg ²⁺ (2) Al ³⁺ to Mg	(3) Mg to Al^{3+} (4) Mg ²⁺ to Al
3.	What is the oxidation number of chromium in the chron	nate ion, CrO_4^{2-} ?
	(1) +6	(3) + 3
	(2) + 2	(4) +8
4.	Given the balanced equation representing a reaction: $2KClO_3(s) \rightarrow 2KCl(s) + 3O_2(g)$ The oxidation state of chlorine in this reaction chan (1) -1 to +1	ges from $(3) + 1$ to -1
	(2) -1 to +5	(4) + 5 to -1
5.	Given the balanced equation representing a reaction: $Fe_2O_3 + 2Al \rightarrow Al_2O_3 + 2Fe$ During this reaction, the oxidation number of Fe ch (1) +2 to 0 as electrons are transferred (2) +2 to 0 as protons are transferred	anges from (3) +3 to 0 as electrons are transferred (4) +3 to 0 as protons are transferred
6.	 Which balanced equation represents a redox reaction? (1) PCl₅ → PCl₃ + Cl₂ (2) KOH + HCl → KCl + H₂O 	(3) $\text{LiBr} \rightarrow \text{Li}^+ + \text{Br}^-$ (4) $\text{Ca}^{2+} + \text{SO}_4^{2-} \rightarrow \text{CaSO}_4$

7. When lithium reacts with bromine to form the compound LiBr, each lithium atom

- (1) gains one electron and becomes a negatively charged ion
- (2) gains three electrons and becomes a negatively charged ion
- (3) loses one electron and becomes a positively charged ion
- (4) loses three electrons and becomes a positively charged ion

Base your answers to questions 15 and 16 on the information below.

The unbalanced equation below represents the decomposition of potassium chlorate.

$$KClO_3(s) \rightarrow KCl(s) + O_2(g)$$

8. Balance the equation *below*, using the smallest whole-number coefficients.

 $\underline{\qquad } \operatorname{KClO}_3(s) \rightarrow \underline{\qquad } \operatorname{KCl}(s) + \underline{\qquad } \operatorname{O}_2(g)$

9. Determine the oxidation number of chlorine in the reactant.

10. In an oxidation-reduction reaction, the number of electrons le	ost is
(1) equal to the number of electrons gained	(3) less than the number of electrons gained

- (1) equal to the number of electrons gained
- (2) equal to the number of protons gained

11. Given the balanced equation representing a reaction:

- In this reaction there is conservation of
 - (1) mass, only
 - (2) mass and charge, only
- 12. Given the unbalanced ionic equation:

When this equation is balanced, both Fe^{3+} and Fe have a coefficient of

- (1) 1, because a total of 6 electrons is transferred
- (2) 2, because a total of 6 electrons is transferred
- (3) 1, because a total of 3 electrons is transferred
- (4) 2, because a total of 3 electrons is transferred
- 13. Given the balanced equation representing a reaction: $Mg(s) + Ni^{2+}(aq) \rightarrow Mg^{2+}(aq) + Ni(s)$

What is the total number of moles of electrons lost by Mg(s) when 2.0 moles of electrons are gained by $Ni^{2+}(aq)?$

- (1) 1.0 mol (3) 3.0 mol (4) 4.0 mol (2) 2.0 mol
- 14. Which half-reaction correctly represents reduction?

(1) $\operatorname{Mn}^{4+} \rightarrow \operatorname{Mn}^{3+} + e^{-}$ (3) $\mathrm{Mn}^{4+} + \mathrm{e}^{-} \rightarrow \mathrm{Mn}^{3+}$ (2) $Mn^{4+} \rightarrow Mn^{7+} + 3e^{-}$ (4) $Mn^{4+} + 3e^- \rightarrow Mn^{7+}$

15. Which equation shows conservation of mass and charge?

(1) $NH_4Br \rightarrow NH_3 + Br_2$	$(3) H_2SO_4 + LiOH \rightarrow Li_2SO_4 + H_2O$
(2) $2Mg + Fe^{3+} \rightarrow Mg^{2+} + 3Fe$	$(4) \operatorname{Cu} + 2\operatorname{Ag}^+ \to \operatorname{Cu}^{2+} + 2\operatorname{Ag}$

16. Which half-reaction equation represents the reduction of a potassium ion?

(1) $K^+ + e^- \rightarrow K$ (3) $K^+ \rightarrow K + e^-$ (2) $K + e^- \rightarrow K^+$ (4) $\mathbf{K} \rightarrow \mathbf{K}^+ + \mathbf{e}^-$

17. Given the balanced equation representing a reaction:

When the iron atoms lose six moles of electrons, how many moles of electrons are gained by the copper ions? (3) 3 moles

- (1) 12 moles
- (2) 2 moles (4) 6 moles

18. Which half-reaction equation represents the reduction of an iron(II) ion?

$(1) \operatorname{Fe}^{2+} \to \operatorname{Fe}^{3+} + e^{-}$	$(3) \operatorname{Fe}^{3+} + e^{-} \to \operatorname{Fe}^{2+}$
$(2) \operatorname{Fe}^{2+} + 2e^{-} \to \operatorname{Fe}$	$(4) \operatorname{Fe} \to \operatorname{Fe}^{2+} + 2e^{-}$

 $2\text{Fe} + 3\text{Cu}^{2+} \rightarrow 2\text{Fe}^{3+} + 3\text{Cu}$

$$H^+(aq) + OH^-(aq) \rightarrow H_2O(l) + 55.8 \text{ kJ}$$

(4) less than the number of protons gained

$$3Mg + __Fe^{3+} \rightarrow 3Mg^{2+} + __Fe$$

NOTES

Spontaneity of Redox Reactions: HOW DO YOU KNOW IF IT WILL HAPPEN?

Table J Activity Series**						
Most Active	Metals	Nonmetals	Most			
	Li	F ₂				
	Rb	Cl_2				
	K	Br_2				
	Cs	I_2				
	Ba					
	Sr					
	Ca					
	Na					
	Mg					
	Al					
	Ti					
	Mn					
	Zn					
	Cr					
	Fe					
	Co					
	Ni					
	Sn					
	Pb					
	H ₂					
	Cu					
	Ag					
Least Active	Au		Least Active			

**Activity Series is based on the hydrogen standard. \mathbf{H}_2 is not a metal.

Sp	ontaneity	of Reactions- Table J	Practice	Name:	
1.	Based on T a.	Table J, which of the follo Ag	owing metals is most reactive. Au	ve? c. Ca	d. Cu
2.	Based on T a.	Γable J, which of the folle Li	owing metals is most likely b. Na	to be oxidized? c. K	d. Cs
3.	Based on T	Table J, circle the reaction	n below that is going to be "	'spontaneous." Explain your	choice:
		$Ca + 2 Na^{+1} \rightarrow Ca^{+2}$	+ 2 Na OR	$2 \operatorname{Na} + \operatorname{Ca}^{+2} \rightarrow 2 \operatorname{Na}^{+1} + 0$	Ca
4.	Circle all o	of the pairs for which a sp	pontaneous reaction will occ	cur:	
	a.	Al, CuCl ₂	c. Sn, Pb	e. Mg^{2+} , Co	g. Li, CaO
	b.	Cu, HCl	d. Au, Ag^+	f. Ni^{2+} , Sn^{2+}	h. H^+ , Sn
5.	Which means a.	tal is more active than Ni Cu	and <i>less</i> active than Zn? b. Mg	c. Cr	d. Pb
6.	Which me	tal is more active than H ₂	2?		
	a.	Ag	b. Cu	c. Au	d. Pb

Base your answers to questions 7 through 9 on the information below.

In a laboratory investigation, magnesium reacts with hydrochloric acid to produce hydrogen gas and magnesium chloride. This reaction is represented by the unbalanced equation below.

 $Mg(s) + HCl(aq) \rightarrow H_2(g) + MgCl_2(aq)$

- 7. State, in terms of the relative activity of elements, why this reaction is spontaneous.
- 8. Balance the equation *below*, using the smallest whole-number coefficients.

$$\underline{Mg(s) + ___ HCl(aq) \rightarrow __ H_2(g) + __ MgCl_2(aq)}$$

- 9. Write a balanced half-reaction equation for the oxidation that occurs.
- 10. On the non-metals side of Chart J, explain why it makes sense that F_2 is most reactive and I_2 is least. Explain using the definition of electronegativity, as well as the electronegativity values.

The Fruit and Vegetable Clock- HOW DOES IT WORK !?

Second Viewing:

Observations:

	Lingering Questions:
Proposed Explanation: How does this potato clock work?	What questions/ wonderings do you have, that if answered could improve your understanding and explanation.
	Give me at least 2!!