1. Point A is located at (4, -7). The point is reflected in the x-axis. Where is its image located?

2. The endpoints of \overline{AB} are A(3,2) and B(7,1). If $\overline{A"B"}$ is the result of the transformation of \overline{AB} under $D_2 \circ T_{-4,3}$ what are the coordinates of A" and B"?

3. Which transformation can map the letter **S** onto itself?

(1) glide reflection

(3) line reflection

(2) translation

(4) rotation

4. What is the image of point (-3,9) after the composition of transformations defined by $R_{90^{\circ}} \circ r_{y=x}$?

5. Which transformation is not always an isometry?

(1) dilation

(3) line reflection

(2) translation

(4) rotation

6. Point C is located at (3, 8). The point is reflected over the line x = 6. Where is its image located?

7. When $\triangle ABC$ is dilated by a scale factor of 2, its image is $\triangle A'B'C$. Which statement is true?

- 1) $\overline{AC} \cong \overline{A'C'}$
- 3) perimeter of $\triangle ABC$ = perimeter of $\triangle A'B'C$
- 2) $\angle A \cong \angle A'$
- 4) $2(\text{area of } \Delta ABC) = \text{area of } \Delta A'B'C'$

8. Point M is located at (4, 7). The point is reflected over the x-axis and then reflected over the y-axis. Where is its image located? Name a single transformation that would map point M to its image?

- 9. Graph and state the coordinates of ΔDOG after 10. Graph and state the coordinates of ΔCAT it is rotated -270°.
 - after $r_{y=-2}$

11. On the accompanying grid, graph and label $\triangle ABC$ with vertices A(3,1), B(0,4), and C(-5,3). On the same grid, graph and label $\Delta A''B''C''$, the image of ABC after the transformation $r_{x-axis}\circ r_{y=x}$.

a. Circle all that apply to $\Delta A''B''C''$, the image of ABC.

Preserves Preserves Preserves Isometry Angle Length Orientation Measure

b. Would it matter if the order of the reflections changed to $r_{y=x} \circ r_{x-axis}$? Prove by finding $\Delta A''B''C''$ under this composite transformation.