Cross Multiply to solve each Proportion

$$\frac{9}{24} = \frac{12}{x}$$

$$\frac{x-3}{3} = \frac{2}{x+2}$$

Two figures that have the same shape but not necessarily the same size are similar (~). Two polygons are similar if (1) corresponding angles are congruent and (2) corresponding sides are proportional. The ratio of the lengths of corresponding sides is the similarity ratio.

EXAMPLE Understanding Similarity

ABCD ~ EFGH. Complete each statement.

a.
$$m \angle E = \overline{a}$$

 $m \angle E = m \angle A = 53$ Corresponding angles are \cong .

b.
$$\frac{AB}{EF} = \frac{AD}{188}$$

 $\frac{AB}{EF} = \frac{AD}{EF}$

Corresponding sides are proportional.

2 EXAMPLE Determining Similarity

Determine whether the triangles are similar. If they are, write a similarity statement and give the similarity ratio.

Three pairs of angles are congruent. Also, corresponding sides are proportional.

$$\frac{AC}{FD} = \frac{18}{24} = \frac{3}{4}$$
 $\frac{AB}{FE} = \frac{15}{20} = \frac{3}{4}$ $\frac{BC}{ED} = \frac{12}{16} = \frac{3}{4}$

$$\frac{AB}{FF} = \frac{15}{20} = 1$$

$$BC = 12 = 3$$

 $\triangle ABC \sim \triangle FED$ with a similarity ratio of $\frac{3}{4}$ or 3:4.

3) EXAMPLE Using Similar Figures

Algebra LMNO ~ QRST · Find the value of x.

Write a proportion.

$$\frac{5}{6} = \frac{2}{8}$$
 Substitute.

$$5x = 12$$
 Cross-Product Property

$$x = 2.4$$
 Solve for x.

This is the

Are the polygons similar? If they are, write a similarity statement and give the similarity ratio. If they are not, explain.

3.

4.

The polygons are similar. Find the value of each variable.

5.

6

 $\triangle DFG \sim \triangle HKM$. Use the diagram to find the following.

7.

m∠F =

$$m \angle M =$$

$$\frac{DF}{HK}$$
:

 $\overline{HM} =$

$$\overline{GF} =$$

The similarity ratio of $\triangle DFG$ to $\triangle HKM$ is _____

Find the value of the variables.

8.

 $\triangle WLI \sim \triangle OBV$

Cross Multiply to solve each Proportion

$$\frac{9}{24} = \frac{12}{x}$$

$$\frac{9x}{9} = \frac{288}{9}$$

$$x = 32$$

This is the

Similarity

Statement

and

Similarity

ratio

$$\frac{x-3}{3} = \frac{2}{x+2}$$

$$\frac{x-3}{3} = \frac{2}{x+2} \qquad (x-3)(x+2) = 6$$

$$x^2 - x - 6 = 6$$

$$x^2 - x - 12 = 0$$

$$(x - 4)(x+3) = 0$$

$$(x - 4)(x+3) = 0$$

Two figures that have the same shape but not necessarily the same size are similar (~). Two polygons are similar if (1) corresponding angles are congruent and (2) corresponding sides are proportional. The ratio of the lengths of corresponding sides is the similarity ratio.

EXAMPLE Understanding Similarity

ABCD ~ EFGH. Complete each statement.

a.
$$m \angle E = m$$

 $m \angle E = m \angle A = 53$ Corresponding angles are \cong .

b.
$$\frac{AB}{EF} = \frac{AD}{88}$$

 $\frac{AB}{EF} = \frac{AD}{EH}$

Corresponding sides are proportional.

EXAMPLE **Determining Similarity**

Determine whether the triangles are similar. If they are, write a similarity statement and give the similarity ratio.

Three pairs of angles are congruent. Also, corresponding sides are proportional.

$$\frac{AC}{FD} = \frac{18}{24} = \frac{3}{4}$$

$$AB = 15 = 3$$

$$\frac{AC}{FD} = \frac{18}{24} = \frac{3}{4}$$
 $\frac{AB}{FE} = \frac{15}{20} = \frac{3}{4}$ $\frac{BC}{ED} = \frac{12}{16} = \frac{3}{4}$

 $\triangle ABC \sim \triangle FED$ with a similarity ratio of $\frac{3}{4}$ or 3: 4.

3) EXAMPLE Using Similar Figures

Algebra $LMNO \sim QRST$ Find the value of x.

Write a proportion.

$$\frac{LM}{QR} = \frac{ON}{TS}$$
 Corresponding sides of \sim polygons are proportional.

$$\frac{5}{6} = \frac{2}{3}$$
 Substitute.

$$5x = 12$$
 Cross-Product Property

$$x = 2.4$$
 Solve for x.

Are the polygons similar? If they are, write a similarity statement and give the similarity ratio. If they are not, explain.

3.

The polygons are similar. Find the value of each variable.

5.

$$\frac{1}{12} = \frac{6}{9}$$

$$\frac{5}{10} = \frac{x}{8}$$

$$10x = 40$$

$$\chi = 4$$

 $\Delta DFG \sim \Delta HKM$. Use the diagram to find the following.

7.

$$m \angle F = 50^{\circ}$$

$$m \angle K = 50^{\circ}$$

$$m \angle F = 50^{\circ}$$
 $m \angle K = 50^{\circ}$ $m \angle M = 70^{\circ}$ $\frac{DF}{HK} = \frac{\angle \phi}{Q}$

$$\frac{DF}{HK} = \frac{\angle \phi}{\phi}$$

$$\overline{HM} = \frac{6}{9} = \frac{5}{x}$$

$$6x = 45 \quad x = 7.5$$

$$\overline{GF} = \frac{6}{9} = \frac{x}{8.4} \quad 9x = 50.4$$

$$\frac{x}{45} \left[x = 7.5 \right]$$

$$\overline{GF} = \frac{\sqrt{9}}{9} = \frac{\times}{8.4}$$

The similarity ratio of $\triangle DFG$ to $\triangle HKM$ is 2:3

Find the value of the variables.

8.

$$\triangle WLI \sim \triangle OBV$$

$$4w = \frac{60}{2} + 5$$