Geometry: Practice and Present Mean Proportional Problems 1. \triangle ABC is a right triangle, \angle C is a right angle, and altitude $\overline{CD} \perp \overline{AB}$. If AD = 3 and CD = 6, find DB. 2. $\triangle ABC$ is a right triangle, $\angle C$ is a right angle, and altitude $\overline{CD} \perp \overline{AB}$. If AB = 8 and AC = 4, find AD. 3. $\triangle ABC$ is a right triangle, $\angle C$ is a right angle, and altitude $\overline{CD} \perp \overline{AB}$. If AC = 10 and AD = 5, find AB. 4. In right $\triangle ABC$, \overline{CD} is the altitude drawn to hypotenuse \overline{AB} . If CD = 6, AD = 3, and DB = 5x - 3, find x. 5. In right $\triangle ABC$, \overline{CD} is the altitude drawn to hypotenuse \overline{AB} . AC = 12 and AB = 25. If BD is represented by x, write and solve an equation to find x. 6. In right \triangle ABC, \overline{CD} is the altitude drawn to hypotenuse \overline{AB} . If CD = 3 cm, and if DB exceeds AD by 8 cm, find AD and DB. Name_____RED_YELLOW_GREEN_BLUE Date____ ## Geometry: Practice and Present Mean Proportional Problems 1. \triangle ABC is a right triangle, \angle C is a right angle, and altitude $\overline{CD} \perp \overline{AB}$. If AD = 3 and CD = 6, find DB. $$\frac{3}{6} = \frac{6}{2}$$ $$3x = 36$$ 2. \triangle ABC is a right triangle, \angle C is a right angle, and altitude $\overline{CD} \perp \overline{AB}$. If AB = 8 and AC = 4, find AD. $$\frac{4}{8} = \frac{x}{4}$$ $$8x = \frac{16}{4}$$ $$x = \frac{7}{4}$$ 3. \triangle ABC is a right triangle, \angle C is a right angle, and altitude $\overline{CD} \perp \overline{AB}$. If AC = 10 and AD = 5, find AB. $$\frac{5}{10} = \frac{10}{x}$$ 4. In right $\triangle ABC$, \overline{CD} is the altitude drawn to hypotenuse \overline{AB} . If CD = 6, AD = 3, and DB = 5x - 3, find x. $$\frac{3}{6} = \frac{6}{5 \times -3}$$ $$15 \times -9 = 36$$ 5. In right $\triangle ABC$, \overline{CD} is the altitude drawn to hypotenuse \overline{AB} . AC = 12 and AB = 25. If BD is represented by x, write and solve an equation to find x. $$\frac{25-x}{12} = \frac{12}{25}$$ $$625 - 25x = 144$$ $$25x = 481$$ $$x = 19.24$$ 6. In right $\triangle ABC$, \overline{CD} is the altitude drawn to hypotenuse \overline{AB} . If CD = 3 cm, and if DB exceeds AD by 8 cm, find AD and DB. $$\frac{x}{3} = \frac{3}{x+8}$$ $$x^{2}+8x-9=0$$ $$(x+9)(x-1)=0$$ $$x=1$$