$a^2 + b^2 = c^2$	Right Triangle (Pythagorean Theorem)
$a^2 + b^2 > c^2$	Acute Triangle
$a^2 + b^2 < c^2$	Obtuse Triangle
Area of a Rectangle	A = bh
Area of a Parallelogram	A = bh
Area of a Triangle	$A = \frac{1}{2}bh$
Area of a Trapezoid	$A = \frac{1}{2}h(b_1 + b_2)$

Area of a Rhombus/Kite

$$A = \frac{1}{2}d_1d_2$$

Area of a Circle

$$d$$
 0 C

$$A = \pi r^2$$

Circumference of a Circle

$$C = 2\pi r$$

$$C = \pi d$$

Area of a Regular Polygon

$$A = \frac{1}{2}ap$$

a apothem perimeter

Pentagon

5 – Sided Figure

Sum of Interior Angles = 540°

∠ Measure in Regular Pentagon = 108°

Hexagon

6 – Sided Figure

Sum of Interior Angles = 720°

 \angle Measure in Regular Hexagon = 120°

Octagon

8 - Sided Figure

Sum of Interior Angles = 1080°

∠ Measure in Regular Octagon = \35°

Nonagon	9 – Sided Figure Sum of Interior Angles = Z 40° ∠ Measure in Regular Nonagon = 40°
Decagon	10 − Sided Figure Sum of Interior Angles = 440° ∠ Measure in Regular Decagon = 44°
Dodecagon	12 – Sided Figure Sum of Interior Angles = 1800° ∠ Measure in Regular Dodecagon = 150°
n-gon	n – Sided Figure Sum of Interior Angles = $(n-2) \cdot 180$ \angle Measure in Regular n -gon = $\frac{(n-2) \cdot 180}{\text{SideS}(n)}$