The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION

INTEGRATED ALGEBRA

School Name: There is a High School Poster Height

Print your name and the name of your school on the lines above. Then turn to the last page of this booklet, which is the answer sheet for Part I. Fold the last page along the perforations and, slowly and carefully, tear off the answer sheet. Then fill in the heading of your answer sheet.

This examination has four parts, with a total of 39 questions. You must answer all questions in this examination. Write your answers to the Part I multiple-choice questions on the separate answer sheet. Write your answers to the questions in Parts II, III, and IV directly in this booklet. All work should be written in pen, except graphs and drawings, which should be done in pencil. Clearly indicate the necessary steps, including appropriate formula substitutions, diagrams, graphs, charts, etc.

The formulas that you may need to answer some questions in this examination are found at the end of the examination. This sheet is perforated so you may remove it from this booklet.

Scrap paper is not permitted for any part of this examination, but you may use the blank spaces in this booklet as scrap paper. A perforated sheet of scrap graph paper is provided at the end of this booklet for any question for which graphing may be helpful but is not required. You may remove this sheet from this booklet. Any work done on this sheet of scrap graph paper will *not* be scored.

When you have completed the examination, you must sign the statement printed at the end of the answer sheet, indicating that you had no unlawful knowledge of the questions or answers prior to the examination and that you have neither given nor received assistance in answering any of the questions during the examination. Your answer sheet cannot be accepted if you fail to sign this declaration.

Notice...

A graphing calculator and a straightedge (ruler) must be available for you to use while taking this examination.

The use of any communications device is strictly prohibited when taking this examination. If you use any communications device, no matter how briefly, your examination will be invalidated and no score will be calculated for you.

DO NOT OPEN THIS EXAMINATION BOOKLET UNTIL THE SIGNAL IS GIVEN.

Answer all 30 questions in this part. Each correct answer will receive 2 credits. No partial credit will be allowed. For each question, write on the separate answer sheet the numeral preceding the word or expression that best completes the statement or answers the question. [60]

1 Given:

$$X = \{X, Z(3)\}$$

$$Y = \{2, 3, 4, 5\}$$

$$Z = \{3, 4, 5, 6\}$$

What is the intersection of sets X, Y, and Z?

(1) {3, 4}

(3) $\{3, 4, 5\}$

(2) $\{2, 3, 4\}$

(4) {1, 2, 3, 4, 5, 6}

Use this space for

Intersection 7 Elements

That are common to all

Sets.

2 Which graph could be used to find the solution of the system of

If χ^2 is positive the perabola opens apward

Integrated Algebra - January '11

Use this space for computations.

3 What is the relationship between the independent and dependent variables in the scatter plot shown below?

- (1) undefined correlation
- (3) positive correlation
- (2) negative correlation
- (4) no correlation

alarse +

4 Tim ate four more cookies than Alice. Bob ate twice as many cookies as Tim. If x represents the number of cookies Alice ate, which expression represents the number of cookies Bob ate?

$$(1)$$
 2 + $(x + 4)$

(3)
$$2(x+4)$$

$$(2) 2x + 4$$

$$(4) \ 4(x+2)$$

$$T = A + 4$$

 $T = X + 4$
 $B = 2T$
 $B = 2(X+4)$

N goes up to

5 Which relation is a function?

$$(2) \ \{(\frac{3}{4},0), (0,1), (\frac{3}{4},2)\}$$

$$(2) \ \{(-2,2), (-\frac{1}{2},1), (-2,4)\}$$

$$(3) \ \{(-1,4), (0,5), (0,4)\}$$

$$(4,3), (6,5)\}$$

on?
$$(0,5)$$
 $\{(-1,4), (0,5), (0,4)\}$

$$\{(2,1), (4,3), (6,5)\}$$

6 What is the value of x in the equation 2(x-4) = 4(2x+1)?

Use this space for computations.

 \bigcirc -2

- $(3) -\frac{1}{2}$
- 2(x-4) = 4(2x+1)

(2) 2

 $(4) \frac{1}{2}$

2x-8 = 8x+4 -12 = 6x-2 = x

7 The rectangle shown below has a diagonal of 18.4 cm and a width of 7 cm.

To the *nearest centimeter*, what is the length, x, of the rectangle?

(1) 11

(3) 20

② 17

(4) 25

- (1) (a-2)(a+2)
- (3) $a^2(a-4)$
- a(a-2)(a+2)
- $(4) \ a(a-2)^2$

factor out an a

 $a(a^2-4)$ $a(a^2-4)$ this expression is the different (a-b)
<math display="block">this expression is the different (a-b) this expression is the different (a-b)
<math display="block">this expression is the different (a-b) this expression is the different (a-b)
<math display="block">this expression is the different (a-b) this expression is the different (a-b)
<math display="block">this expression is the different (a-b) this expression is the diffe

9 Which ratio represents $\sin x$ in the right triangle shown below?

Use this space for computations.

Sin = of posite se Lypotenuse

Sin X = 28

Sin X = 33

 $(2) \frac{28}{45}$

- $(4) \frac{53}{28}$
- 10 What is the value of the expression $(a^3 + b^0)^2$ when a = -2 and b = 4?
 - (1) 64

2 49

$$(a^{3} + b^{0})^{2} = (-2)^{3} + (4)^{0}$$

11 A student correctly graphed the parabola shown below to solve a given quadratic equation.

What are the roots of the quadratic equation associated with this graph?

(1) -6 and 3

(3) -3 and 2

(2) -6 and 0

- \bigcirc -2 and 3
- 12 Which value of x is the solution of the equation $\frac{2}{3}x + \frac{1}{2} = \frac{5}{6}$?
 - $\bigcirc \frac{1}{2}$

(3) $\frac{2}{3}$

(2) 2

 $(4) \frac{3}{2}$

Use this space for computations.

13 What is the range of the data represented in the box-and-whisker plot

75-15=60

(1) 40

60

(2) 45

(4) 100

- Which equation illustrates the associative property

 (1) x + y + z = x + y + zReflexive property

 (2) x(y + z) = xy + xzDistributive property

 (3) x + y + z = z + y + xCommutative property

 (4) (x + y) + z = x + (y + z)Associative property
- 15 Josh and Mae work at a concession stand. They each earn \$8 per hour. Josh worked three hours more than Mae. If Josh and Mae earned a total of \$120, how many hours did Josh work?
 - (1) 6

(3) 12

(2) 9

Integrated Algebra - January '11

(4) 15

They earned \$12000, so they worked 15 hours Let Maés hours Let Josh's hours = X+3 X + (X + 3) = 15 2X + 3 = 15 2X = 12 X = 6 X

Use this space for computations.

16 Which data set describes a situation that could be classified as quantitative?

- (1) the phone numbers in a telephone book
- (2) the addresses for students at Hopkins High School
- (3) the zip codes of residents in the city of Buffalo, New York
- (3) the time it takes each of Mr. Harper's students to complete a test

Quantitative deta concerns how many or how much.

17 Which is the graph of y = |x| + 2?

be negative,

So answer choices

(1) and (3) can

be eliminated.

Solution # 2

can be eliminated

because it is

a parabola

18 Sam's grades on eleven chemistry tests were 90, 85, 76, 63, 94, 89, 81, 76, 78, 69, and 97. Which statement is true about the measures of central tendency?

Use this space for computations.

 \bigcirc mean > mode

mean > mode

(2) mean < median

(3) 69, 76, 76, 78, 81, 85, 89, 90, 94, 97Mode

Modian = mean

Modian = mean

Modian = mean

Mean = 898 = 81.63

19 Which interval notation represents the set of all real numbers greater than 2 and less than or equal to 20?

(1) (2,20)

(3) [2,20)

(2) (2,20]

(4) [2,20]

(does not include) [includes]

20 What is the sum of $\frac{3}{2r}$ and $\frac{7}{4r}$?

(1) $\frac{21}{8r^2}$

- ② $\frac{13}{4x}$

21 What is $3\sqrt{2} + \sqrt{8}$ expressed in simplest radical form? 7.071067312

(1) $3\sqrt{10}$ (2) $3\sqrt{16}$

- (4) $7\sqrt{2}$

22 What is the slope of the line whose equation is 3x - 7y = 9?

Use this space for computations.

 $(1) -\frac{3}{7}$

 $(3) -\frac{7}{3}$

y=mx+b

$$\bigcirc 3 \frac{3}{7}$$

 $(4) \frac{7}{3}$

Islope

23 The figure shown below is composed of two rectangles and a quarter circle.

Arec = (5x3) + (5x3) + TTT Arec = 15+15+ TT(3)² Arec = 30+ 9TT Arec = 30+ 9TT 4 Arec = 37.06858347

What is the area of this figure, to the nearest square centimeter?

(1) 33

(3) 44

2) 37

(4) 58

Solution#2 **24** The expression $\frac{(10w^3)^2}{5w}$ is equivalent to

(1) $2w^5$

(3) $20w^5$

(2) $2w^8$

 $(4) 20w^8$

(16.16.10.10.10.10.10.10) (2)(10) W.W.W.W.W. 20W5 **25** If $\frac{ey}{n} + k = t$, what is y in terms of e, n, k, and t?

$$(1) \ \ y = \frac{tn + k}{e}$$

$$(3) \ \ y = \frac{n(t+k)}{e}$$

$$\frac{ey}{h} + k = t$$

Use this space for

computations.

$$(2) \ \ y = \frac{tn-k}{e}$$

$$y = \frac{n(t-k)}{e}$$

26 What is the result when $2x^2 + 3xy - 6$ is subtracted from $x^2 - 7xy + 2$?

$$\bigcirc -x^2 - 10xy + 8$$

(3)
$$-x^2 - 4xy - 4$$

(2)
$$x^2 + 10xy - 8$$

(4)
$$x^2 - 4xy - 4$$

 $\frac{1}{5 \cdot 10 + 10 \cdot 10^{2}}$

27 What is an equation of the axis of symmetry of the parabola represented

by
$$y = -x^2 + 6x - 4$$
?

$$x = 3$$

(3)
$$x = 6$$

$$\chi = \frac{-9}{20}$$

(2)
$$y = 3$$

(4)
$$y = 6$$

$$y = -x^{2} + 6x - 4$$
 $a = -1$
 $b = 6$
 $c = -4$
 $x = -\frac{6}{2a} = \frac{-(6)}{2(-1)}$

28 Which equation has roots of -3 and 5?

$$(1) \ x^2 + 2x - 15 = 0$$

$$(3) x^2 + 2x + 15 = 0$$

$$x^2 - 2x - 15 = 0$$

$$(4) \ x^2 - 2x + 15 = 0$$

$$X = 5$$

$$(x+3)(x-5) = 0$$

 $(x+3)(x-5) = 0$
 $(x+3)(x-5) = 0$
 $(x+3)(x-5) = 0$
 $(x+3)(x-5) = 0$

Use this space for computations.

29 A spinner that is equally divided into eight numbered sectors is spun 20 times. The table below shows the number of times the arrow landed in each numbered sector.

	Spinner Sector	Number of Times
۸	1	2
Pine ->	2	3
Pine ->	3	2
	4	3
pine >	5	4
rc	6	2
Pine >	7	3
1	8	1
		20 tol

Prime #5, 7, 1, 1, 2000 A to spend to s

Based on the table, what is the empirical probability that the spinner will land on a prime number on the next spin?

 $(1) \frac{9}{20}$

(3) $\frac{12}{20}$

 $(2) \frac{11}{20}$

 $(4) \frac{14}{20}$

30 Which expression represents $\frac{x^2 - x - 6}{x^2 - 5x + 6}$ in simplest form?

 $(1) \frac{x+2}{x-2}$

(3) $\frac{1}{5}$

 $(2) \frac{-x-6}{-5x+6}$

(4) -1

$$\frac{X^{2}-x-6}{X^{2}-5x+6} = \frac{(x-3)(x+2)}{(x-3)(x-2)} = \frac{x+2}{x-2}$$

Part II

Answer all 3 questions in this part. Each correct answer will receive 2 credits. Clearly indicate the necessary steps, including appropriate formula substitutions, diagrams, graphs, charts, etc. For all questions in this part, a correct numerical answer with no work shown will receive only 1 credit. [6]

31 Roberta needs ribbon for a craft project. The ribbon sells for \$3.75 per yard. Find the cost in dollars, for 48 inches of the ribbon.

$$\frac{1 \text{ yard}}{\text{cost}} = \frac{36}{3.75} = \frac{48}{x}$$

(cross multiply) $36x = 3.75 (48)$
 $36x = 180$
 $x = \frac{180}{36}$

$$x = 5$$

The cost of 48 inches of ribbon is

| # 5.00|

32 The square dart board shown below has a side that measures 40 inches. The shaded portion in the center is a square whose side is 15 inches. A dart thrown at the board is equally likely to land on any point on the dartboard.

40 inches

Find the probability that a dart hitting the board will not land in the shaded area.

The whole area is $(40)^2 = 1600$ sq. inches
The shaded area is $(15)^2 = 22559$, inches

The area not shaded is 1600 -225 =

Probability (event) = # fororable outcomes = 1375

33 As shown in the diagram below, a ladder 5 feet long leans against a wall and makes an angle of 65° with the ground Find, to the *nearest tenth of a foot* the distance from the wall to the base of the ladder.

SOH / CAN TOR

cos 65° = adjacent hypotenuse cos 65° = adjacent

cross mult-ply

Set calculator to degrae mode

2. [1] 309/309 = adjacent

2.1 feet

Part III

Answer all 3 questions in this part. Each correct answer will receive 3 credits. Clearly indicate the necessary steps, including appropriate formula substitutions, diagrams, graphs, charts, etc. For all questions in this part, a correct numerical answer with no work shown will receive only 1 credit. [9]

	×	\searrow
34 A line having a slope of $\frac{3}{4}$ passes through the point $(-8,4)$. Write the equation of this line in slope-intercept form.	Jelovino:	winter cer
	N Nox !	+ /
slope-intercept form > Y (-8, 4)	$f = K \lambda$	
(-8,4)	lope depen	dent
1 xvalue 3 = slope =	m varie	
known values = m x +	P	Wite
7 = 4 4 = = = (-8)	t betherow	the equipment
m===		V= MX+1
$b = 10$ $4 = \frac{-24}{4}$	+ 6	
4 = -6	A.	ns we/

35 The test scores for 18 students in Ms. Mosher's class are listed below:

Complete the frequency table below.

Interval	Tally	Frequency
51–60		2
61–70	11	2
71–80	1111	4
81–90	441	6
91–100	1111	4

Draw and label a frequency histogram on the grid below.

36 Solve algebraically for *x*: $\frac{x+2}{6} = \frac{3}{x-1}$ cross

multiply (x+2)(x-1) = 6(3)distributive (x+2)(x-1) = 6(3)property $(x^2 - x + 2x - 2) = 18$ simplify x2 + x -20 = 0 Factor (x+5)(x-4)=0Multiplication Property of Zero X+5=0 X-4=0 34,-58

Answer all 3 questions in this part. Each correct answer will receive 4 credits. Clearly indicate the necessary steps, including appropriate formula substitutions, diagrams, graphs, charts, etc. For all questions in this part, a correct numerical answer with no work shown will receive only 1 credit. [12]

37 An oil company distributes oil in a metal can shaped and a height of 15.1 cm. A worker incorrectly meas	
Determine the relative error in calculating the sur	
	Actual - Measurement
$O \setminus I$	
Relative Error	Actual
Actual radi	measured
3.1	15
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	ieisht
\ \	
SA = Surface Area = 2	(end areas) + 1 (Side Hier)
SH = 5 wrtace 11.	$\int_{\Omega} dx = \pi $
End Areas are Cir	cles: A = TT
C-1. Acea is Re	ctangle: A = wh the circumference
Side III	the circumference
The width is	the circumstante d circles C = 2777 Mecsored S.A
of the end	1 CITCO
\sim 1 \leq Δ	$\frac{1}{2} = \frac{1}{2} = \frac{1}$
Harris 1270 h	$= 2(\pi)(3)^{2} + (2)(\pi)(3)^{2}$
$5.A = 2(\pi/2) + 1(2)(\pi)(5.1)(15)$ $= 2(\pi)(5.1)^{2} + 1(2)(\pi)(5.1)(15)$	6Z8.3185301
1- 2027503	1117.294 - 000
Relat	ive Error - 691, E.
Integrated Algebra – January '11 [19]	= .0293143456 [OVER]
	= 1.029 Answer

Integrated Algebra - January '11

[20]

39 Graph the following system of inequalities on the set of axes shown below and label the solution set S.

$$y > -x + 2$$

$$y \le \frac{2}{3}x + 5$$

