12-5 Circles in the Coordinate Plane

The equation of a circle with center at (h, k) and radius r is

The equation of a circle with center at the **origin** and radius r is

For 1-6, find the equation of the circle with...

1. center: (-3, 7) and radius of 9

2. center: origin and radius of $\sqrt{41}$

3. center (0, -8) and radius of 3

4. center: (-1, -4) and point (-4, 0)

For 7 and 8, name the center and the radius of the circle.

7.
$$x^2 + (y-7)^2 = 16$$

8.
$$(x+5)^2 + (y+1)^2 = 48$$

For 9 and 10, find the center and radius of the circle. Then graph the circle.

9.
$$x^2 + (y-3)^2 = 36$$

10.
$$(x+1)^2 + (y+1)^2 = 9$$

11. Write the equation of the circle whose diameter \overline{AB} has endpoints (-4, 2) and (4, -4).

12. Find the circumference and area, in terms of π , of the circle with equation $(x-9)^2 + (y-3)^2 = 64$.

13. Write the equation of a circle with an area of 36π and center at (4,7).

14. The line represented by the equation $y = -\frac{4}{3}x + 11$ is tangent to a circle at (6, 3). If the center of the circle lies on the *x*-axis, find the equation of the circle.

12-5 Circles in the Coordinate Plane

The equation of a circle with center at (h, k) and radius r is

$$(x - h)^{2} + (y - k)^{2} = r^{2}$$

The equation of a circle with center at the **origin** and radius r is

For 1-6, find the equation of the circle with...

1. center: (-3, 7) and radius of 9

$$(x+3)^2 + (y-7)^2 = 81$$

3. center (0 , -8) and radius of 3

$$X^{2} + (y+8)^{2} = 9$$

5. Center (-5, 1) (-5, 1) $(x+5)^2 + (y-1)^2 = 9$

2. center: origin and radius of $\sqrt{41}$

4. center: (-1, -4) and point (-4, 0)

$$d = \sqrt{(-1+4)^2 + (-4-c)^7}$$

$$= \sqrt{(-1+4)^2 + (-$$

For 7 and 8, name the center and the radius of the circle.

7.
$$x^2 + (y-7)^2 = 16$$

Center (0, 7)

8.
$$(x+5)^2 + (y+1)^2 = 48$$

For 9 and 10, find the center and radius of the circle. Then graph the circle.

9.
$$x^2 + (y-3)^2 = 36$$

10.
$$(x+1)^2 + (y+1)^2 = 9$$

11. Write the equation of the circle whose diameter \overline{AB} has endpoints (-4, 2) and (4, -4).

$$M = (0, -1) \qquad r = \sqrt{(4-0)^2 + (-4+1)^2}$$

$$= \sqrt{4^2 + (-3)^2}$$

$$= \sqrt{25} = 5$$

$$\chi^2 + (\gamma + 1)^2 = 25$$

12. Find the circumference and area, in terms of π , of the circle with equation $(x-9)^2 + (y-3)^2 = 64$.

13. Write the equation of a circle with an area of 36π and center at (4, 7).

$$(x-4)^2 + (y-7)^2 = 36$$

14. The line represented by the equation $y = -\frac{4}{3}x + 11$ is tangent to a circle at (6, 3). If the center of $f = \sqrt{(4-2)^2 + (6-3)^2}$ the circle lies on the x-axis, find the equation of the circle.

Lies on χ -axis $\Gamma = \sqrt{25}^{2} = 5$

$$m_{\perp} = \frac{3}{4}$$
 $(6,3)$
 $1 = mx + 6$

$$V = \frac{3}{4} \times \frac{3}{2}$$

Lies on x-axis
$$\Gamma = \sqrt{25^2} = 5$$

 (x_10)
 $0 = \frac{3}{4}(x)^{-\frac{3}{2}} (x-2)^2 + y^2 = 25$
 $2 = x$

$$3 = \frac{3}{4}(6) + 6$$
 $6 = -\frac{3}{2}$