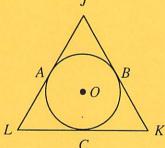
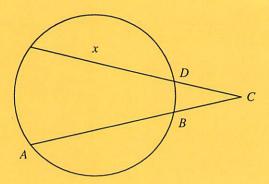
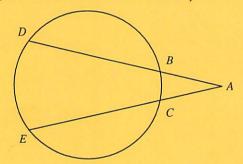
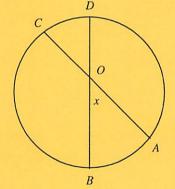
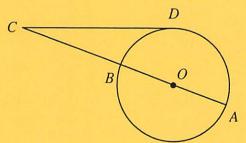

Chapter 12: Circles Extra Practice


1. Given that \overline{PQ} is tangent to circle O, and the $m\angle P=20^{\circ}$, solve for x.


2. \overline{AB} is tangent to circle O at B. If AB = 9 and AO = 10.4, find the length of radius r to the nearest tenth. (The figure is not drawn to scale.)

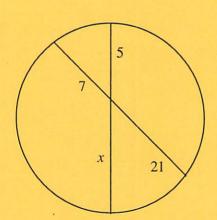

3. \overline{JK} , \overline{KL} and \overline{LJ} are all tangent to O. JA = 15, AL = 9, and CK = 8. Find the perimeter of ΔJKL . (The figure is not drawn to scale.)


4. Solve for x: AB = 19, BC = 7, and CD = 5.


5. If $\widehat{mDE} = 109^{\circ}$ and $\widehat{mBC} = 49^{\circ}$. Find $m \angle A$. (The figure is not drawn to scale.)

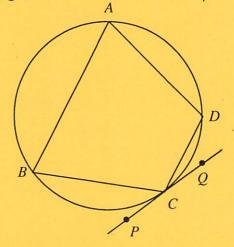
6. Find the value of x if $\widehat{mAB} = 43^{\circ}$ and $\widehat{mCD} = 24^{\circ}$. (The figure is not drawn to scale.)

7. Find the diameter, to the nearest tenth, of the circle if BC = 14 and DC = 25. (The figure is not drawn to scale.)

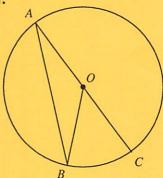


8. Write the equation of a circle whose diameter has endpoints A(-4, -2) and B(8, 6)

9. Given that $\angle DAB$ and $\angle DCB$ are right angles, $\overline{CD} \cong \overline{AD}$ and $m \angle BDC = 35^\circ$, what is \widehat{mCDA} ? (The figure is not drawn to scale.)

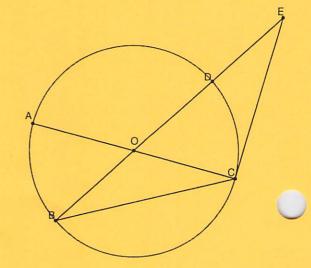

10. Solve for x.

11. In the circle, $\widehat{mAD} = 94^{\circ}$ and $m \angle D = 76^{\circ}$. (The figure is not drawn to scale.)



b) Find $m \angle DCQ$.

12. Given circle O with diameter \overline{AC} , if $\widehat{mBC} : \widehat{mAB} = 1:4$, find:


a.
$$\widehat{mAB} = \underline{\hspace{1cm}}$$

13. \overline{AC} is a diameter of circle O. Segment \overline{BODE} is a secant, and \overline{EC} is a tangent. Chord \overline{BC} is drawn. If $\overline{mAB}: \overline{mBC}: \overline{mCD} = 1:2:1$, and $\overline{mDA} = 120^\circ$, find:

a.
$$\widehat{mBC} = \underline{}$$

e.
$$m \angle DBC =$$
