# 

|              |              |              |              | <b>₩</b>     |
|--------------|--------------|--------------|--------------|--------------|
| <u>\$100</u> | <u>\$100</u> | <u>\$100</u> | <u>\$100</u> | <u>\$100</u> |
| <u>\$200</u> | <u>\$200</u> | <u>\$200</u> | <u>\$200</u> | <u>\$200</u> |
| <u>\$300</u> | <u>\$300</u> | <u>\$300</u> | <u>\$300</u> | <u>\$300</u> |
| <u>\$400</u> | <u>\$400</u> | <u>\$400</u> | <u>\$400</u> | <u>\$400</u> |
| <u>\$500</u> | <u>\$500</u> | <u>\$500</u> | <u>\$500</u> | <u>\$500</u> |

### Exponents: Negative and Zero

# Exponents: Multiplication

## Exponents: Division

## Scientific Notation

## Exponential Functions

| Exponents:<br>Neg. and 0 | Exponents:<br>Multiplication | Exponents:<br>Division | Scientific<br>Notation | Exponential Functions |
|--------------------------|------------------------------|------------------------|------------------------|-----------------------|
| <u>\$100</u>             | <u>\$100</u>                 | <u>\$100</u>           | <u>\$100</u>           | <u>\$100</u>          |
| <u>\$200</u>             | <u>\$200</u>                 | <u>\$200</u>           | <u>\$200</u>           | <u>\$200</u>          |
| <u>\$300</u>             | <u>\$300</u>                 | <u>\$300</u>           | <u>\$300</u>           | <u>\$300</u>          |
| <u>\$400</u>             | <u>\$400</u>                 | <u>\$400</u>           | <u>\$400</u>           | <u>\$400</u>          |
| <u>\$500</u>             | <u>\$500</u>                 | <u>\$500</u>           | <u>\$500</u>           | <u>\$500</u>          |











 $g^{-3}d^4 \bullet d^{-8}$ 







 $4xy^{-3}z^{6}$   $16a^{-4}b$ 







$$h^{-3}v^6 - 4h^2v^{-3}$$







$$(4c^{-4}d^9)^3 \cdot c^{12}$$







 $3x^{12} \cdot 4x^6$ 







 $-4k^{3} \cdot 6k^{9} \cdot -5k^{-4}$ 







$$\left(-3y^3z^5\right)^2$$















$$(-2x) \cdot (4y) \cdot (-3x^4y^2)^3$$







14g<sup>5</sup>
10g<sup>2</sup>







 $a^9b^5c$   $a^5b^{12}c^3$ 































### Write the following Number in Scientific Notation

54,000,000,000







#### Write the following Number in Standard Form

 $9.17 \times 10^{-5}$ 







### Simplify the Expression in Scientific Notation

$$(5.6 \times 10^{-4})(1.4 \times 10^{-7})$$







#### Simplify the Expression in Scientific Notation

$$\left(5.25\times10^{12}\right)$$

 $\left(3.5\times10^3\right)$ 







#### Simplify the Expression in Scientific Notation

$$\frac{\left(8.633\times10^{-11}\right)}{\left(8.9\times10^{-3}\right)} + \left(1.2\times10^{-9}\right)$$







#### Exponential Growth or Decay?









#### Exponential Growth or Decay?

| Day | Fractional Part of the Rock Remaining |  |
|-----|---------------------------------------|--|
| 1   | 1                                     |  |
| 2   | 1 2                                   |  |
| 3   | 1 4                                   |  |
| 4   | <u>1</u><br>8                         |  |







The value, y, of a \$15,000 investment over x years is represented by the equation

$$y = 15000(1.2)^x$$

What is the investment worth after 6 years?





Kathy plans to purchase a car that depreciates (loses value) at a rate of 14% per year. The initial cost of the car is \$21,000. Which equation represents the value, *v, of the car after 3 years?* 





The population of Henderson City was 3,381,000 in 1994, and is growing at an annual rate of 1.8%. If this growth rate continues, what will the approximate population of Henderson City be in the year 2000?







1



$$\frac{1}{g^3 d^4}$$



$$\frac{1xz^6a^4}{4y^3b}$$







64d<sup>27</sup>



 $12x^{18}$ 



## $120k^{8}$



 $9y^6z^{10}$ 



32c<sup>6</sup>

33



## $216x^{13}y^7$



#### **CATEGORY 3 - \$100**

2g<sup>3</sup>
5







y<sup>6</sup>m<sup>3</sup>



$$-3r^{13}g^{5}$$



16 81p<sup>8</sup>



#### $5.4 \times 10^{10}$



#### 0.0000917



### $7.84 \times 10^{-11}$



### $1.5 \times 10^9$



#### $1.09 \times 10^{-8}$



#### Growth



#### Decay



\$44,789.76



#### \$13,357.18



3,762,979





## Can You Evaluate??

### Evaluate the Following Expression in Fraction Form

$$x = -3$$
,  $y = 2$ , and  $z = 7$ 

$$6x^{-2}y^{-4}z$$



#### **FINAL CATEGORY**

 7

 24

#### END OF GAME

Daily Doubles and usage notes follow...



# 





# 









