
The Atmosphere

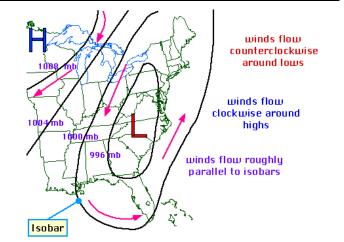
- As altitude increases, air pressure decreases!
- As altitude increases, water vapor decreases!
- As temperature increases, air density decreases!! → This is why hot air rises!
- Use ESRT page 14.

Temperature

- Measured by a **thermometer**.
- **Isotherms:** lines of equal temperature on a weather map
- Temp Conversion ESRT Pg. 13
- Most heat is from long-wave infrared radiation from the Earth, which is then absorbed by water vapor, carbon dioxide, & methane

• Heat is transferred by wind and air currents throughout Earth by **convection**!

Warm air rises


- ✓ Warming air makes the molecules move faster and spread out.
- ✓ This makes the air less dense.
- ✓ Less dense air is light and will rise.

Cold air sinks

- ✓ Cooling air makes the molecules move slower and group together.
- ✓ This makes the air denser.
- ✓ Denser air will sink

Atmospheric Pressure

- Measured with a **barometer**
- **Isobars:** lines of equal air pressure on a weather map
- Pressure Conversion ESRT page 13.
- Air pressure changes affect all other weather conditions.

Lows (cyclones)	Highs (anticyclones)	
Rotates counter-clockwise	Rotates clockwise	
Pressure	High Pressure	
Associated with warmer ,	Associated with cooler air, clear	
stormy weather, lots of	skies, and little or no	
precipitation, and clouds.	precipitation.	

<u>Wind</u>

- Caused by differences in air pressure
- Wind ALWAYS goes from HIGH pressure to the LOW pressure area.
 H L
- Pressure gradient: the difference in air pressure
 - Shown on a weather map by how close together the isobars are (closer together means a steeper pressure gradient)
 - The steeper the pressure gradient, the stronger the winds!
 - Winds are always named for the direction that they come **from**!
- Wind direction measured with a weather vane.
- Wind speed measure with an anemometer.

Land Breeze Sea Breeze Pressure Land Land Ocea Warms During Cools After Daylight Dark During the night, the During the night, the During the day, the During the day, air land cools quickly and sea stays warm and land heats up and over the sea is cool. the dense air above it the less dense warm air above it The cool air is denser, begins to sink creating air above it rises becomes less dense sinks, and forms high high pressure. creating low and rises. Risina pressure. pressure. air creates low pressure.

Local Winds

Coriolis Effect and Global Winds

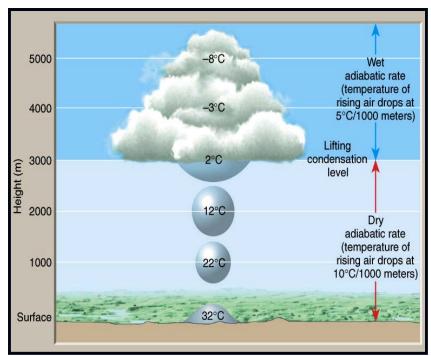
- Earth's rotation causes wind to be deflected instead of traveling in a straight line.
- Curve to the **right** in the **northern** hemisphere.
- Curve to the **left** in the **southern** hemisphere.

Humidity (Moisture)

- Humidity: measured with a psychrometer.
- Sources of water vapor:
 - Mostly **evaporation** from the world's oceans.
 - **Transpiration:** water vapor given off by living plants.
- Warm air holds **more** moisture than cold air.

Relative Humidity

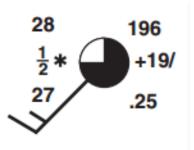
- A comparison (%) of how much water vapor that the air IS holding to how much water vapor the air COULD hold at a particular temperature.
- Relative Humidity can change even if water vapor amount does not change.
- Relative Humidity changes as air temperature changes.
 - Temp increases: Relative Humidity decreases (usually in the afternoon)
 - o Temp decreases: Relative Humidity increases (usually in the morning)
- 100 % Relative Humidity means air is holding all the water vapor it can.
- **Dew Point Temperature:** the temperature at which the relative humidity reaches 100%.
- When Relative Humidity is 100% condensation starts and clouds form in the sky.

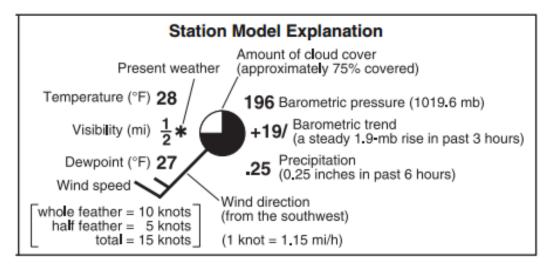

The **closer** the **air temperature** is to the **dewpoint temperature**, the **higher** the **relative humidity**, and the **greater** chance of clouds and precipitation.

<u>Clouds</u>

Steps to Cloud Formation:

- 1.) air RISES
- 2.) air EXPANDS
- 3.) air COOLS
- 4.) at dewpoint temp,


water vapor CONDENSES


Weather Variables and Station Models

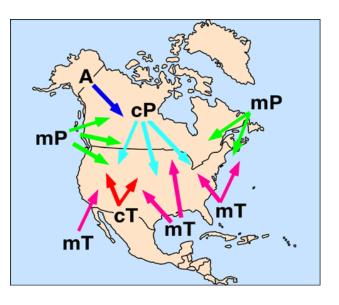
- o Temperature
- o Dew point
- o Air Pressure
- o Barometric Trend
- o Precipitation
- o Cloud Cover
- Wind Speed
- Wind Direction
- o Visibility

This is a Station Model

Station Models tell us the current weather conditions (ESRT page 13)!

Air Masses

- Body of air with similar temperature and moisture conditions throughout.
- Gets its characteristics from the area it comes from (Source Region).

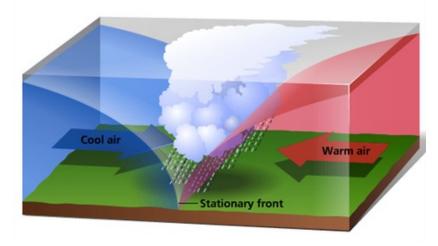

Classified by:

- 1. **Temperature:** Warm (Tropical) Cold (Polar)
- 2. Humidity: Moist (Maritime) Dry (Continental)

DESCRIPTION	CONDITION	LOCATION FORMED
Maritime Tropical	Moist and Warm	Over Water and Lower
		Latitudes
Continental Tropical	Dry and Warm	Over Land and Lower
		Latitudes
Maritime Polar	Moist and Cold	Over Water and Higher
		Latitudes
Continental Polar	Dry and Cold	Over Land and Higher
		Latitudes

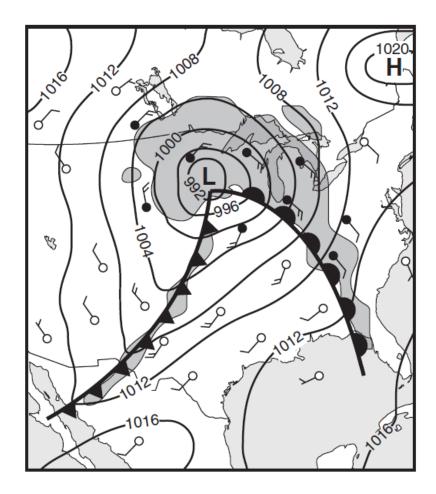
There are 4 major types of air masses:

- 1. Maritime Tropical (**mT**)
- 2. Continental Tropical (cT)
- 3. Maritime Polar (**mP**)
- 4. Continental Polar (cP)
- * Air Mass symbols on ESRT page 13
- * Air Masses are moved by Prevailing Winds (pg 14 in ESRT)



Fronts

o boundaries between air masses (symbols on ESRT page 13)


COLD FRONT Cold air moving in Moves faster Precip and thunderstorms along WARM AIR MASS COLD AIR MASS the front ■ Once it passes, air pressure ↑, humidity \downarrow , air temperature \downarrow WARM FRONT Warm air moving in Moves slower WARMFRONT Long, steady rain ahead of front Once it passes, air pressure ↓, WARM AIR MASS COLD AIR MASS humidity \`, air temperature \` **OCCLUDED FRONT** • A cold front catching up to and Warm ali passes a warm front warm air is squeezed up combination of cold front and Cool al warm front weather

STATIONARY FRONT- no motion of the air masses, some steady precip possible

Weather Maps

• A map showing the current surface distribution of atmospheric pressure, precipitation, fronts, and weather variable conditions: temperature, dew point, cloud cover, wind speed and direction, etc...

